


# The complete clarification of all functional perception processes when placing objects



*Caught In A Line*  
The explanatory model of all motoric movement actions

N.J. Mol  
August 2024 ©

Contact: [kwillinq@gmail.com](mailto:kwillinq@gmail.com)  
<https://www.researchgate.net/profile/Nj-Mol/research>  
<https://www.explanatorymodel.nl/common-daily-actions/placing>

## TABLE OF CONTENTS:

|                                                                                                                                                                                                                                                                                                   |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Introduction                                                                                                                                                                                                                                                                                      | 1  |
| Part 1 Einstein, the Stationary Coaster, and the Digital Clock: The Visual Perception Observes Stationary Coasters Moving in Time                                                                                                                                                                 | 4  |
| Part 2 When putting a glass down we first create a perceptual image of a latent action trajectory shape out of the perspective of the bottom of the glass - The scientific evidence                                                                                                               | 8  |
| Part 3 Placing a glass on a coaster requires a compelling collaboration between an internal and an external focus – The sequential positions of the bottom of the glass determine the primary focus                                                                                               | 12 |
| Part 4 When putting a glass down the essence of the task is solely carried out by the movements of the bottom of the glass along an action trajectory shape; The perception of the disappearance of the action trajectory shape provides the tau-value                                            | 17 |
| Part 5 Executing an external action trajectory shape along which the (bottom of the) glass moves dictates all internal sensorimotor perception processes; The <i>tau</i> -coupling process when placing a glass on a coaster demonstrates that we absolutely do not need a motor plan             | 24 |
| Part 6 The bottom of the glass isn't capable to move by itself along an action trajectory shape; Scientific evidence of the implicit occurrence of an internal and external focus during random motor activity and how their roles evolutionary have reversed within placing a glass on a coaster | 34 |
| Part 7 The function of the cortical streams – It appears a straight action path, but we can only guide a glass to a coaster with a zigzag movement                                                                                                                                                | 43 |

## Introduction

In 2016, a comprehensive explanatory model was developed that offers the possibility to appoint all functional perception processes involved in any conceivable goal-directed motor action. It provides a universal explanation, demonstrating that the execution of any action always requires the simultaneous perception of three autonomous foci. Whether it involves catching a ball, the grasping of a coffee cup or the placing of a glass on a coaster, one autonomous focus continuously tracks the movement of the ball, the coffee cup and the coaster as the environmental object, universally representing a catching action. The other two autonomous foci are concerned with perceiving the movement within the egocentrically executed action: i.c., the movement of the hand (fingertips) or the (bottom of the) glass along an action trajectory shape (towards the ball, the coffee cup or the coaster), which universally represents a throwing action.

In relationship to which it compels a fact that, within our worldly dimensions, the sequential positions P of any conceivable object are always interconnected c.q. must always sprout from each other. This means that, for example, with an incoming tennis ball within a catching action, the perceptions of all positions P of the tennis ball will always construct an action trajectory shape, and this phenomenon will always represent solely one line segment shape. This limits the perception to such an extent that we can already precisely know within which global fluctuation boundaries the actual catching will have to take place. According to which it is important to realize that all manifest positions of the tennis ball create the line shape, but more essentially, the latent part of the tennis ball's action trajectory shape must (!) emerge from the manifest part.

This applies not only to catching actions but also to all throwing actions. So also when placing a glass on a coaster, all positions of the bottom of the glass will always be interconnected and construct just one sole action trajectory shape, will the current position of the bottom always represent the precise division between the manifest and latent parts of the action trajectory shape, and must the latent part of the action trajectory also (!) emerge from the manifest part. Which facts are clearly not to be refuted.

The explanatory model is based on the paradigm that, in its evolutionary development, the perceptual organ first functioned as a comparison mechanism that could record the autonomous movement of the animal and the autonomous movement of the environment c.q. the environmental objects in line segment shapes. In relationship to which it is important to emphasize that the ability to perceive

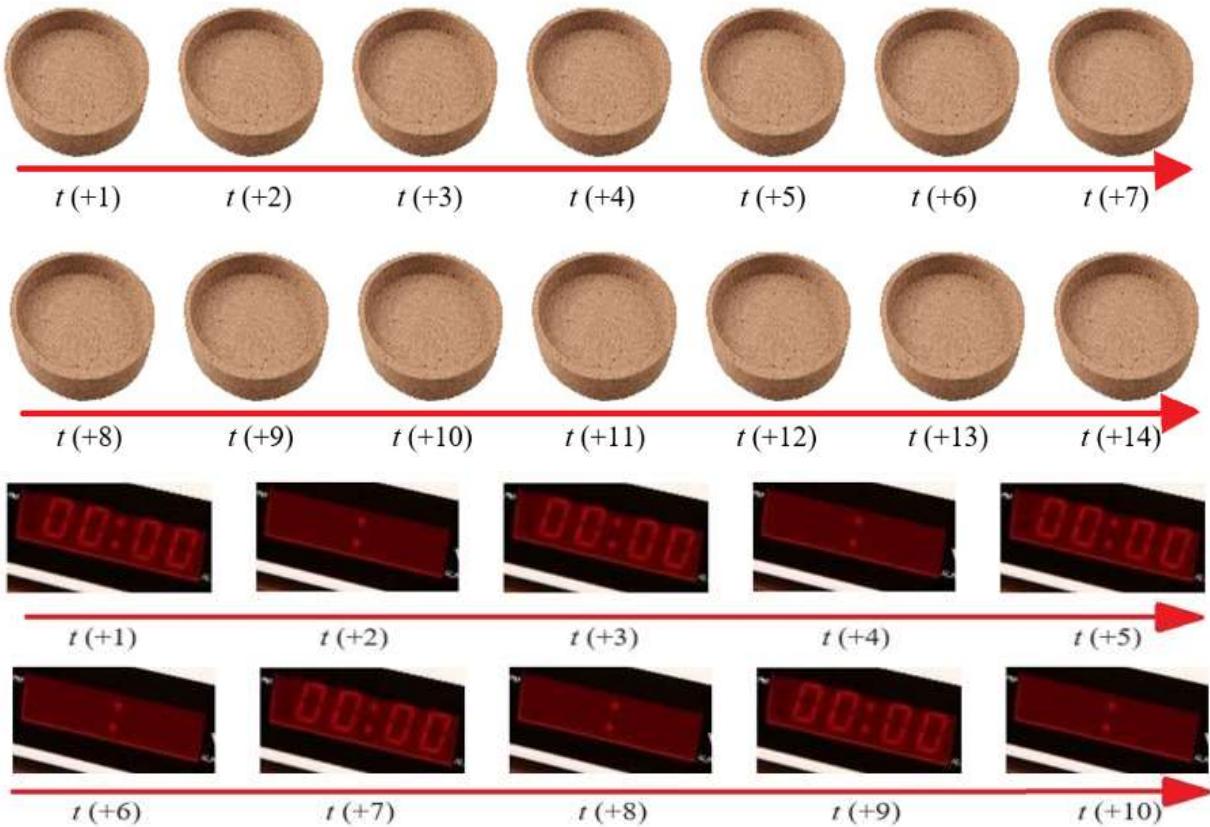
movement arose long before the more advanced cognitive skills were developed that gave us insight into the nature of what exactly moves<sup>1</sup>. Thus, perceiving movement essentially has nothing to do with perceiving what exactly moves, and it can also be established that perceiving mere movement must be placed close to the origin of the evolutionary development of the perception processes.

This premise aligns entirely with the findings of J.J. Gibson, who, in addition to indicating the autonomy of the animal, also indicates the autonomy of the environment, while also showing that in the execution of every action, a touching process between the animal and the environment always takes place. If we then take the aforementioned paradigm as a starting point for the execution of a goal-directed action, it can be shown that the animal and the environmental object must at least come into contact with each other first in most motor actions. Which within our perception processes means that 1. a perceptual image of the movement of the environmental object within an action trajectory shape of the catching action, and 2. a perceptual image of the egocentric movement of the animal within an action trajectory shape of the throwing action, will at least have to lead to a perceptual image of a latent intersection point of those two line segment shapes.

As within any conceivable action then solely two universal possibilities arise:

1. **The environmental object (e.g., the coaster or the tennis ball) is standing still<sup>2</sup>.** The perception records this as a zero-movement within a zero-line segment shape within the catching action, and a perceptual image of a latent egocentric action trajectory shape out of the perspective of the bottom of the glass must be formed to construct a perceptual image of an intersection point of the two involved action trajectory shapes.
2. **The environmental object (e.g., the coaster or the tennis ball) is moving (towards us).** The perception records this as a movement within an incoming action trajectory shape within the catching action. This also necessitates forming a perceptual image of a latent egocentric action trajectory shape out of the bottom of the glass. Which finally should lead to the creation of an autonomous perceptual image of a future (latent) intersection point sprouting from the two latent parts of the involved action trajectory shapes that are constructed separately.

This explanation demonstrates that, contrary to the current state of science, the perception processes within any conceivable motor action originate much more from a single universal source and illustrates that in all actions, an intersection point c.q. contact point between the animal and the environmental object must first be realized, and that after this contact, a pressing or pushing process usually follows. The model shows that the perceptual processes involved in the contact process when grasping objects are identical to the perception processes when pressing a button (e.g., piano key, touchscreen, elevator buttons, electric stove, light switch, etc.), pushing away a billiard ball, or kicking a football towards a goal. The contact process is perceptually identical in all cases. When grasping a coffee cup, however, a pressing or pushing process must follow the contact process within the relevant fingertips, resulting in a total zero vector. Conversely, pressing a piano key requires the creation of an actual movement vector to press the key down. The same must happen with the other mentioned buttons, and thus the touching process when placing a glass on a coaster also requires the identical perception processes as in ordinary grasping, and the glass must then be released. This releasing is precisely the reverse process of when, after the touching process, we let the fingers perform a pushing c.q. pressing process when grasping a glass.


---

<sup>1</sup> Two important remarks: 1. Of course it is very important within evolutionary development of the perception processes that you can distinguish a lion from a zebra., and 2. Even till this day our visual perception processes observe the (external) movement of our body parts in the exact same way as they observe the movement of any other (external moving) environmental object. Solely due to internal perception processes in relationship to a causal connection with this external movement provides us the difference between the two.

<sup>2</sup> In part 1 (page 4), the explanatory model of the motoric movement action demonstrates that perception always observes stationary objects moving in time, but through an active comparison process can conclude that the object in question is stationary. Therefore, even though it is concluded that the coffee cup is stationary, zero-movement is indeed observed on a timeline, which can create an intersection point with an egocentric action trajectory shape in relationship to the grasping hand.

This overview document specifically addresses those aspects of the throwing and catching action in placing a glass on a coaster that are barely recognized within science. A small part focuses on the perception of the coaster within the catching action, but the vast majority of new insights are revealed concerning the egocentric throwing action that specifically focuses on the movement of the bottom of the glass. It shows the scientific evidence that 1. a perceptual image of a latent action trajectory shape from the bottom of the glass to the coaster is always first created, and 2. how this action trajectory shape can only be filled with the help of two autonomous foci. This overview document now summarizes all phenomena ever found within the movement sciences and forges them into one universal explanatory model. Based on logic, it can be concluded that this forms the complete and definitive explanation of the functional perception processes in placing any conceivable objects.

# Part 1 - Einstein, the Stationary Coaster, and the Digital Clock: The Visual Perception Observes Stationary Coasters Moving in Time



*Caught In A Line*

The explanatory model of all motoric movement actions

N.J. Mol  
August 2024

Contact: [kwillinq@gmail.com](mailto:kwillinq@gmail.com)

<https://www.researchgate.net/profile/Nj-Mol/research>

<https://www.explanatorymodel.nl/common-daily-actions/placing>

## Introduction

In the dynamic world of visual perception and theoretical physics, seemingly simple objects like a stationary coaster and a digital clock reveal surprising insights. This article explores how our visual system always perceives all environmental objects moving in time but can interpret them as static objects. By examining examples such as the blinking zeros of a digital clock and the static edges of a coaster, we discover that our brains perform complex computations to understand stability and motion. The major ecological breakthrough encompasses the fact that stationary environmental objects are perceived in an identical manner to moving objects within the vista. These discoveries have profound implications, not only for visual cognition but also for our understanding of space and time, as outlined in Einstein's theory of relativity. This introduction invites you to explore the fascinating cross-pollination of psychology and physics, where the boundaries between perception and reality blur.

## The Example of the Digital Clock

Consider the example of a digital clock where the zeros flash after a power outage. When the clock starts working again, the zeros blink on and off in exactly the same place. This example illustrates an important principle. The visual perception of the first set of zeros has no relationship with the later perception of the zeros, except for their identical position. This phenomenon illustrates how we perceive zero-movement in timeline segment shapes. Stillness can only be perceived through the active comparison of all observations over time, which allows us to deduce that stationary environmental objects within a vista are perceived as actively as moving environmental objects.



## Perception of a Stationary Coaster

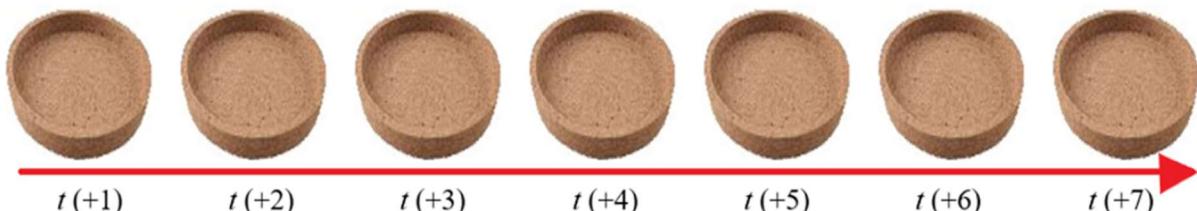
We perceive a stationary coaster in an identical manner to the flashing zeros on a digital clock. The coaster's edges and contours do not change position over time. This lack of movement signals to our brain that the coaster is stationary. Just as with the zeros on the clock, the perception of the coaster at any given moment  $t(x)$  in time has no direct relationship with the perception of the coaster at subsequent moments  $t(x+n)$  in time. Each moment is perceived independently, yet the consistency of the cup's position reinforces the perception of stillness.

1. Static Line Segments:
  - o The static nature of the edges and contours of the coaster creates a visual perception of stillness. These features remain in the same position, indicating zero movement.
2. Positional Data Consistency:

- Each point on the coaster's surface is linked to its previous and subsequent positions in time. This consistent positional data ensures that the coaster appears stationary, as there is no disruption in its positional continuity.

3. Perceptual Continuity:

- Our visual system continuously processes these stable elements, reinforcing the perception of the coaster as stationary. This perpetual perception is key to understanding how we interpret zero-movement within zero-movement line segment shapes.


### Ecological and Visual Perception

According to Gibson's theory of affordances, the physical properties of our environment provide opportunities for action and perception. Our visual system has evolved to take advantage of these affordances. Light and moving space are intrinsic parts of our surroundings, and organisms have ecologically and organically developed mechanisms to interact according to these elements. The premise of the explanatory model encompasses the key idea that every environmental object's actual position  $P(0)$  at time  $t(0)$  within a vista is connected to its manifest positions  $P(-x)$  at time  $t(-x)$  and future (latent) positions  $P(+x)$  at time  $t(+x)$ , and thus is always confined within a line segment shape c.q. always is confined within a timeline. This continuity helps us perceive objects as stable and unchanging when they are at rest.

### The Visual System as a Comparing Organ

Our perception system functions as a comparing organ, utilizing logic to interpret and understand our environment. Here's how this works:

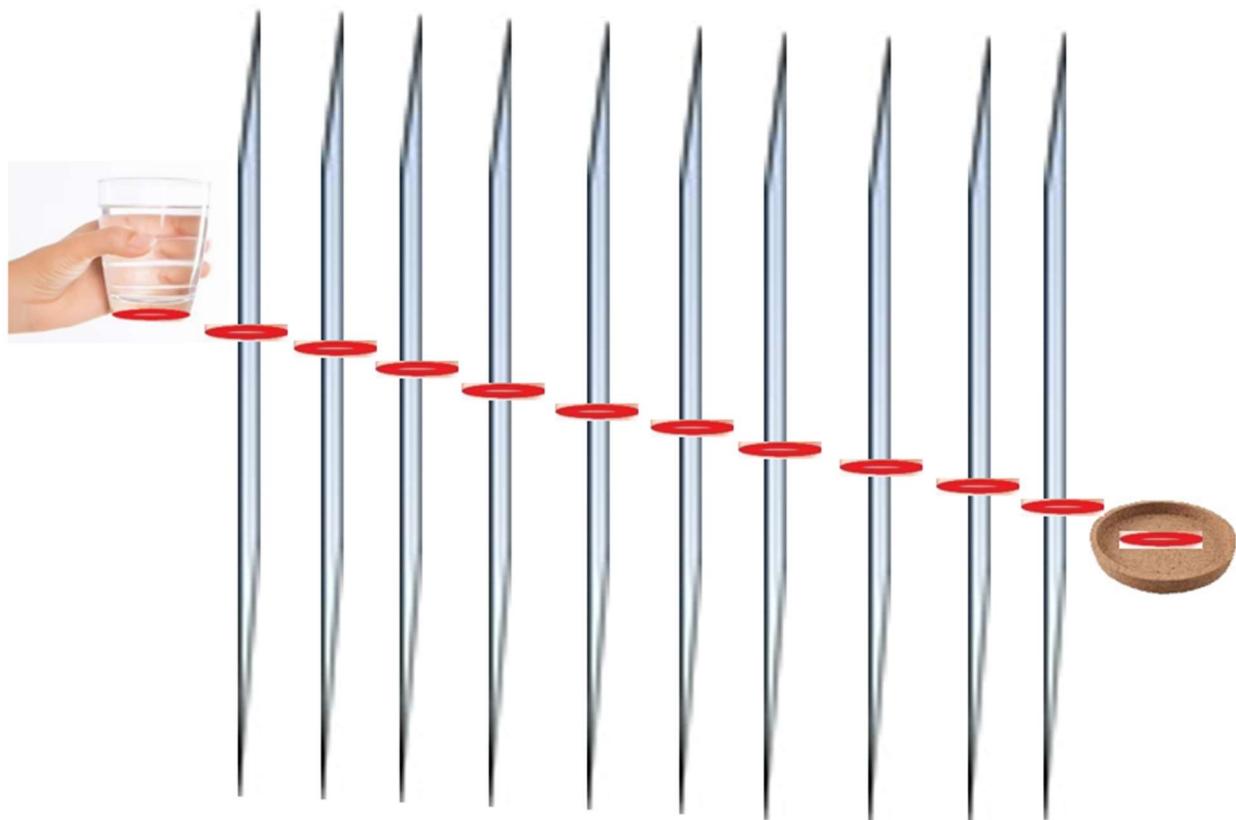
1. Comparison Over Time:
  - Our visual system compares the positions of objects at different moments in time. For example, when looking at a stationary coaster or the zeros on a digital clock, our brain continuously compares their positions at  $t(0)$ ,  $t(+1)$ ,  $t(+2)$  etc., in time. Despite perceiving each moment independently, the consistent positional data across these moments leads to the interpretation of stability and zero movement.
2. Logical Consistency:
  - The brain uses logic to make sense of the visual information. If an object appears in the same place repeatedly without any perceived movement between these instances, the brain logically concludes that the object is stationary. This logical processing allows us to understand and navigate a complex environment.
3. Pattern Recognition:
  - Our visual system is adept at recognizing patterns and regularities. By comparing the spatial and temporal patterns of objects, it can determine whether something is moving or still. This pattern recognition relies on logical assessment of the consistency and changes in the visual input.



### Zero-Movement within Action Trajectory Shapes

The concept of zero-movement within action trajectory shapes can be further illustrated through the perception of a stationary coaster. Similar to the flashing zeros on a digital clock, the coaster is perceived as being at rest because each point on its surface is linked to its previous and subsequent positions in time. This creates a continuous action trajectory shape that indicates no movement. However, it's essential to note that while the coaster appears motionless in space, the entire explanation hinges on its movement in time.

### Relationship with Relativity Theory


In the context of relativity theory, particularly as articulated by Einstein, the distinction between space and time becomes crucial. Objects can remain spatially stationary (zero-movement) while still undergoing temporal changes. This concept aligns with our perception of the coaster: although it occupies a fixed spatial position, its temporal trajectory is dynamic. The coaster's state evolves through time, even though it remains static in its spatial coordinates.

This interpretation resonates with Einstein's insight that space and time are interwoven into a single continuum, where objects move through both dimensions simultaneously. The perception of the coaster's zero-movement line segment shapes reflects our visual system's ability to discern spatial stability amidst temporal progression. This dual perspective underscores the intricacies of perception and the deeper philosophical implications of how we understand movement and stillness in the universe.

### Summary

The perception of a stationary coaster and the zero-movement within a timeline illustrates a fundamental aspect of both visual perception and theoretical physics. While the coaster appears static, acknowledging its temporal evolution highlights the complexity of our continuous active perception processes. This duality not only enhances our understanding of visual cognition but also deepens our appreciation for the interconnected nature of space and time, as explained by the theory of relativity.

Part 2 - When putting a glass down we first create a perceptual image of a latent action trajectory shape out of the perspective of the bottom of the glass - The scientific evidence



*Caught In A Line*  
The explanatory model of all motoric movement actions

N.J. Mol  
July 2024 ©

Contact: [kwilling@gmail.com](mailto:kwilling@gmail.com)

<https://www.researchgate.net/profile/Nj-Mol/research>

<https://www.explanatorymodel.nl/common-daily-actions/placing>

## Introduction

The explanatory model of the motoric movement action provides a universal explanation of all functional perception processes within all goal-directed actions. It demonstrates that performing any conceivable action always requires the simultaneous perception of three autonomous foci<sup>3</sup>, in accordance with J.J. Gibson's theory, which includes both the movement of the animal/organism and the movement of the environment. When placing a glass on a coaster, one autonomous focus remains engaged with (the movement of) the coaster, which universally represents a catching action. The two other autonomous foci are concerned with perceiving the movement within the egocentrically executed action: specifically, with the movement of the (bottom of the) glass along an action trajectory shape (towards the coaster), which universally represents a throwing action.

This article specifically focuses on the two foci involved in the egocentric throwing action when putting a glass down on a coaster. The explanatory model shows that all throwing actions require a compelling cooperation between an autonomous internal focus and an autonomous external focus. This insight, that two autonomous foci are present instead of a single undivided motor action, not only allows a final and ending specification of all perception processes individually but also reveals as a novelty that a coupling within the egocentric throwing action itself is capable to occur<sup>4</sup>.

The explanatory model of the motoric movement action thus provides a complete description of the *tau*-coupling process, wherein the essence of the task, the primary focus, is executed through (the perception of) the movement of the (bottom of the) glass over a pre-planned action trajectory shape between the current position of the glass and the coaster<sup>5</sup>. This perceptual image is therefore determined in advance within a tactical consideration and doesn't merely consist than the future sequential positions the (bottom of the) glass must occupy to achieve a successful action. Sequential positions of any object effectively always create line segment shapes, and when the action is actually executed, the current position of the (bottom of the) glass is going to fill in that perceptual image step by step. Thus, it can be observed within a line segment shape that the gap of the latent positions P gradually disappears and, in full accordance with the findings of D.N. Lee, produces the *tau*-value, which plays a crucial role in the completion of the motor action in cooperation with the secondary focus<sup>6</sup>.

The explanatory model of the motoric movement action partly relies on logical reasoning but also presents scientific evidence. This chapter provides scientific proof that in putting objects down, we

---

<sup>3</sup> [The cortical streams mediate the grasping of a cup equal as they mediate within the nerve spiral \(youtube.com\)](https://www.youtube.com/watch?v=QP4vPVAw-Yg)  
<https://www.youtube.com/watch?v=QP4vPVAw-Yg>

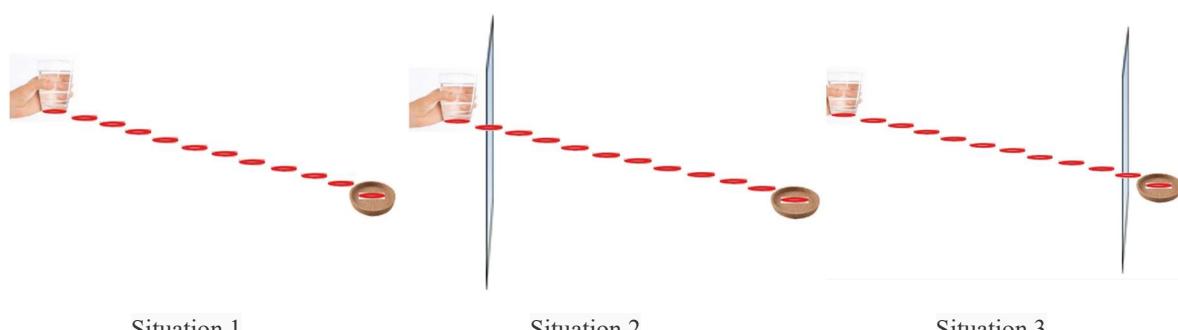
<sup>4</sup> D.N. Lee did indeed identify the *tau*-value associated with the primary focus, but he considered the egocentric action as one indivisible whole. His lifelong quest to find the phenomenon it should be connected to remained unsatisfied because he never realized that the coupling occurs within the egocentric action itself.

<sup>5</sup> [The bottom of the glass isn't capable to move by itself along an action trajectory shape](https://www.researchgate.net/publication/382877496) Scientific evidence of the implicit occurrence of an internal and external focus during random motor activity a

<sup>6</sup> [Executing an external action trajectory shape along which the bottom of the glass moves dictates all internal sensorimotor perception processes](https://www.researchgate.net/publication/382877734) The tau-coupling process when placing a glass on a coast

always first create a perceptual image of a latent successful action trajectory shape before we actually perform any action.

The scientific proof


The evidence is quite straightforward and can be easily verified through a simple empirical investigation. You can either conduct the experiment yourself or ask a test subject to repeatedly try to put a glass down on a coaster. The only instruction given to the subject is to attempt to place the glass only if they genuinely believe they have a realistic chance of getting rid of it successfully.



Images: The scientific proof is based upon the competence to visualize a giant huge glass shopping window. The left image shows a normal dimension of such a window. In relationship to the scientific proof you need to magnify that image 10 to 20 times. Like in the right image.

Pick a random table with a random placed coaster and create the following circumstances:

- Situation 1: Do not alter the environment (zero measurement). Let the test subject execute ordinary placing actions.
- Situation 2: Place a giant huge glass shopping window (height 20 meter x width 30 meter) between the glass and the coaster, close to the glass (test subject).
- Situation 3: Place a giant huge glass shopping window (height 20 meter x width 30 meter) between the glass and the coaster, close to the coaster.
- Situation 4: Place a giant huge glass shopping window (height 20 meter x width 30 meter) between the glass and the coaster. at any random position P.



Situation 1

Situation 2

Situation 3

Images: In situation 1, a test subject will simply attempt to place the glass at the coaster. In situations 2 and 3, a giant glass shop window is placed between the glass and the coaster, and the test subject will not initiate any action with the intention of actually getting the glass on the coaster. Due to the fact that the perception processes solely notice one (!) position P that prevents a full undisrupted course of the (bottom of the) glass to pass.

Conclusion:

In situation 1, you and/or the test subject will simply put the glass down on the coaster. In situations 2, 3, and 4, you and/or the test subject do not initiate an action with the intention of getting rid of the glass on the coaster. Situations 2 and 3 do not provide significant insight on their own, but situation 4 clarifies everything. Whether the giant glass shop window is placed near the glass or near the coaster makes no difference to the test subject. If there is a large shop window anywhere clearly present, the test subject will not initiate a motoric action with the intention of getting the glass on the coaster. This applies to every conceivable position  $P$  of the shop window, from the very first position  $P(0)$  near the glass to a shop window occupying the last position  $P(n)$  just before the coaster.

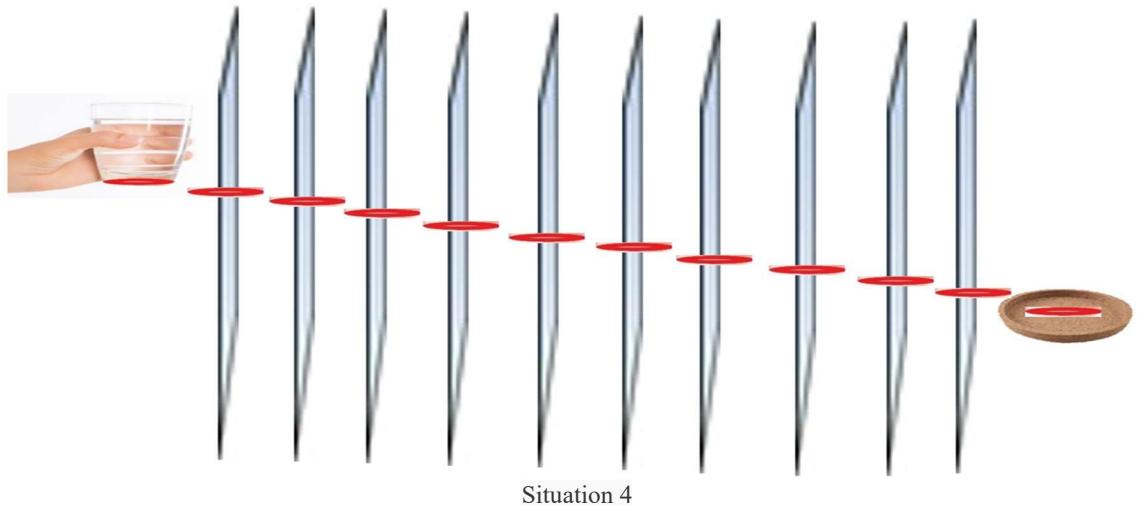
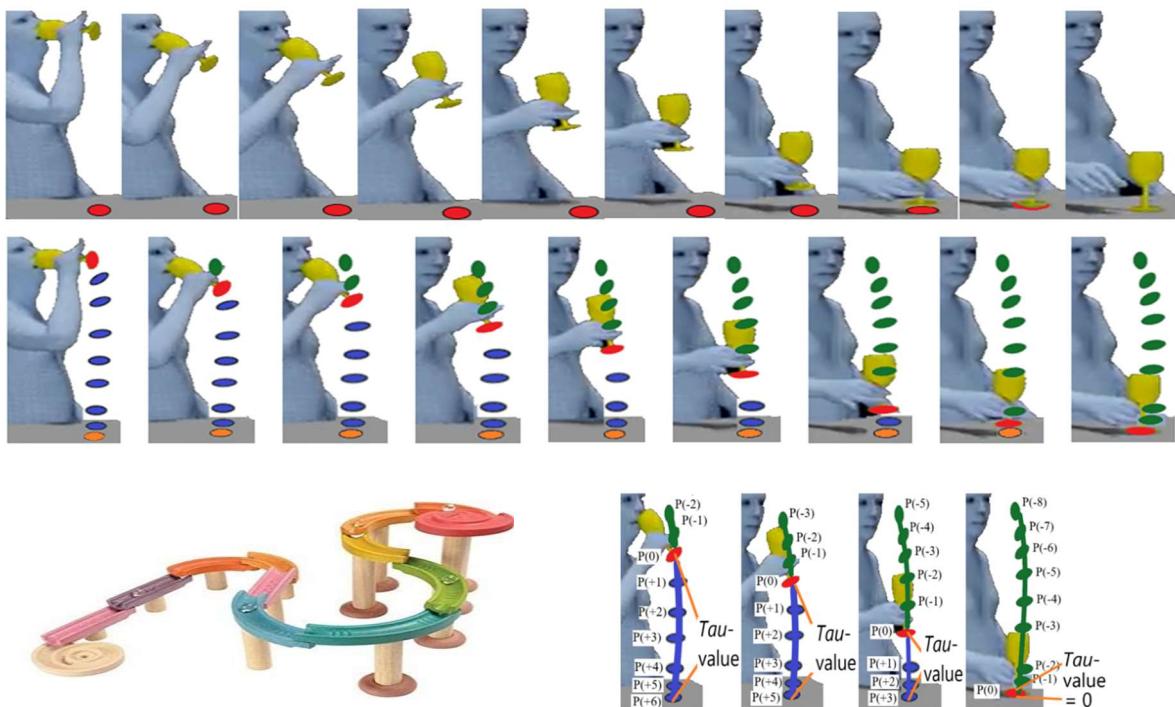




Image: In situation 4, it becomes clear that prior to the actual execution, we consider all consecutive *future* (!) positions of the (bottom of the) glass. It doesn't matter where the shop window is positioned between the glass and the coaster; the action is not performed. Mathematically, one can argue that an uninterrupted series of consecutive positions  $P$  creates a line segment or line segment shape (action trajectory shape). The image provides a perfect visual representation that within the placing of objects, we first form a perceptual image of the entire latent action trajectory shape before we actually execute anything. In the animation, you can clearly observe that the action trajectory shape is specifically formed from the bottom of the glass.

This means that we assess every position  $P(0-n)$  between the glass and the coaster beforehand, clearly determining whether each position  $P$  allows the (bottom of the) glass to pass through so that it can ultimately reach the coaster. In relationship to which it can be observed that if one position  $P$  is not *empty* (!), the mission is aborted. Upon which you can draw the factual conclusion that we will have to look at (!) c.q. we will have to perceive every position  $P(x)$  between the glass and the coaster beforehand if that specific position  $P(x)$  is also allowing the physical dimensions of the glass to pass. Mathematically, an uninterrupted series of consecutive positions  $P$  can be designated as a line or line segment shape (action trajectory shape). This completes the scientific proof that within placing objects down, we first form a perceptual image of the entire latent action trajectory shape before we actually execute anything.

Part 3 - Placing a glass on a coaster requires a compelling collaboration between an internal and an external focus – The sequential positions of the bottom of the glass determine the primary focus



*Caught In A Line*  
The explanatory model of all motoric motoric actions

N.J. Mol  
August 2024 ©

Contact: [kwillinq@gmail.com](mailto:kwillinq@gmail.com)

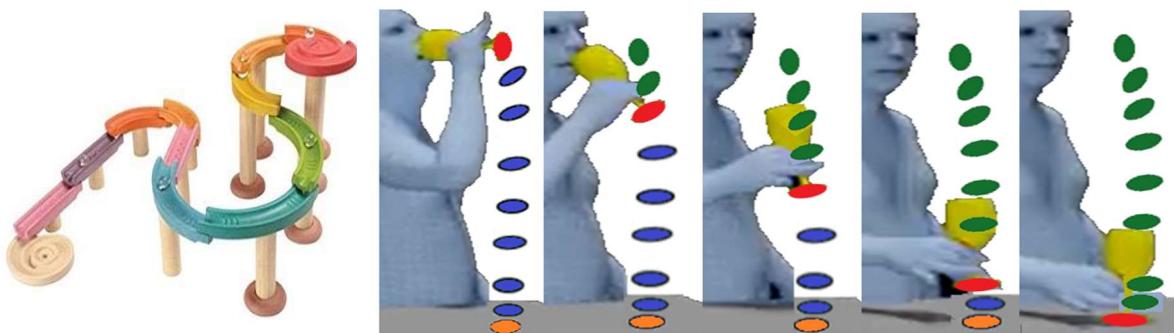
<https://www.researchgate.net/profile/Nj-Mol/research>

<https://www.explanatorymodel.nl/common-daily-actions/placing>

## Introduction

Traditionally, science has assumed that one motor action encompasses one focus. This assumption has seemingly been so logical that it has never been questioned. However, this has led to the absence of a plausible explanation for the functional perception processes underlying the execution of all motor actions, even after 100+ years of movement sciences. In 2016, an explanatory model was found that is capable of identifying all functional perception processes within any imaginable motor action. With near certainty, it shows that every motor action involves the perception of three autonomous foci interacting with each other. When placing a glass on a coaster, this interaction involves one focus that remains solely occupied with the movement of the coaster, which can be universally characterized as a catching action. The other two foci, conversely, are only concerned with the egocentric action and involve the movement of (the bottom of) the glass, which can be universally characterized as a throwing action. Within this egocentric throwing action, scientific evidence indicates that an internal (secondary) focus must always be directed at an external (primary) focus. In relationship to which it must expressly be noted that these two foci represent entities that fundamentally differ from the current scientific terminology.

The explanatory model emphasizes that the essence of a motor task always involves the external movement of an action object (outside our body) along an action trajectory shape, but that the action object will never be capable to move on its own along that line. The action object is often an inanimate object (pen, needle, key, tennis racket, ball, letter, pointer (pc) etc.) that we hold during an action, and even though the fingertips, during a grasp action with the hand on the outside, consist of living cells, we absolutely aren't capable of moving them there over an action trajectory shape. The explanatory model unequivocally shows that initiating the movement of an action object outside our body is only possible by using secondary perception of autonomous internal movements (within our body).


Compared to the current state of science, the explanatory model represents a revolutionary breakthrough, revealing that two foci must enter into an obligatory connection simultaneously, and this universal stacking of two perceptions of two autonomous movements occurs in every motor movement action. They are clearly autonomous because they belong to two incompatible worlds. Observations of movement inside and outside the body are actually never able to overlap.

This article focuses entirely on the motor task of placing a glass on a coaster. The article convincingly shows that only (the bottom of) the glass c.q. the movement of (the bottom of) the glass, comparable to a marble in a marble run, executes this action trajectory shape and thereby completes the essence of the task. For that reason, primary attention must be directed to the external movement of (the bottom of) the glass. While that bottom can only be moved with entirely different movements within the body that extend only to the sides of the glass. The attention needed for this must serve the main goal and is therefore referred to as the secondary (internal) focus. The explanation shows that every conceivable motor action is based on the same two foci. Due to this universal character, the explanatory model creates the most ultimate conceivable ecological argument.

The article does not delve deeply into the differences with the current state of science, because there is still no clear consensus on this subject within the scientific community.

The primary focus in relationship to placing a glass on a coaster encompasses the perception of movement outside the body

The explanatory model of all motoric movement actions, as demonstrated within placing a glass on a coaster, shows that only the (bottom of the) glass c.q. the movements of the (bottom of the) glass, will execute the essence of the task and therefore represents the primary focus within this action. The explanatory model provides scientific evidence that a motor movement action always involves two successive autonomous phases. The tactical consideration first aims to create a perceptual image of a latent action trajectory shape over which, in this case, the (bottom of the) glass c.q. the movements of the (bottom of the) glass promises to become successful, and only then proceeds to actual action.



Images: Placing a glass involves merely moving (the bottom of) the glass to, for example, a coaster (orange). The essence of this task is thus solely executed by the autonomous movements of (the bottom of) the glass, and therefore, that is the main process we need to observe. The glass will follow an action trajectory shape, similar to a marble moving through a marble run (left). Within every conceivable motor action, the current position of the marble or the action object will precisely demarcate the division between the manifest and latent part of the action line. The series of images (right) shows the current position of the bottom of the (yellow) glass at position  $P(0)$  marked in red, clearly illustrating this bifurcation. The positions already traversed are indicated in green, while the latent positions yet to be traversed are shown in blue.

When we factually start the action, we are going to fill in the perceptual image of the action trajectory using the glass. So within the primary focus, this is the essential process that our perception processes must guide, and surprisingly, science has overlooked this process entirely until now. In subsequent articles, it will become evident that filling in the action trajectory by the (bottom of the) glass yields the crucial *tau*-value to which the secondary focus is compellingly linked, and the mediating role of the cortical streams in this process will be explained.

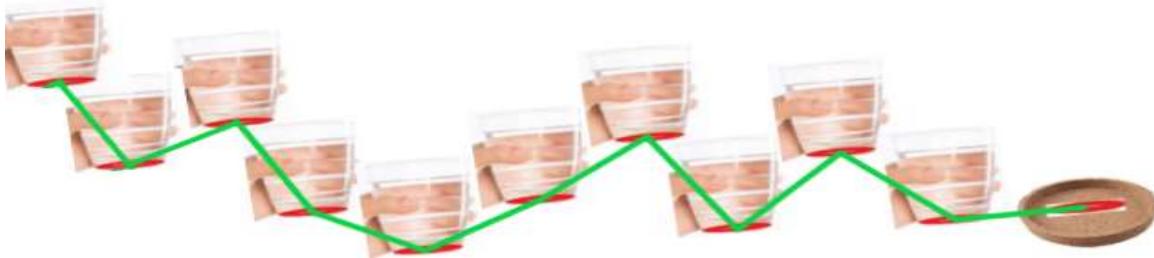



Image: The explanatory model demonstrates that within every imaginable motor action, an autonomous internal focus must be directed towards an autonomous external focus. This insight reveals the scientific evidence that we can never execute any action trajectory shape identically, as it involves the stacking of perceptions from autonomous movements that belong to two incompatible worlds. For example, you have never picked up a coffee cup in an identical way or executed a free throw in basketball in an identical manner. Similarly, you will never be able to produce an identical action trajectory when placing a glass on a coaster. Within which the explanatory model hastily adds that it has never been the objective to achieve such perfect uniformity within an ecological evolution. Creating similar line forms is far more efficient and effective than creating identical action trajectory shapes, to the extent that a parsimonious organism would have never evolved otherwise.

Maybe we do construct a perfect straight action trajectory when we create a latent perceptual image of the future positions of the (bottom of the) glass within this task. However, due to the fact that you can only execute the movement of the (bottom of the) glass with the perception of an entirely different autonomous movement, the (bottom of the) glass will inevitably deviate from that "perfect" original pre-perceptual image at every position P within the action trajectory. This process is, therefore, guided by the double and mutual process of the cortical streams, representing the brilliant ecological response of the body to execute every motor action in the most efficient and effective way possible. The ventral and dorsal streams continuously interact with each other to correct the inevitable deviations, but this interaction does require a (very short) reaction time<sup>7</sup>. As a result we can never perform one motor action identically (conform Bernstein) and the (bottom of the) glass will always follow a different zigzag pattern within a placing task.

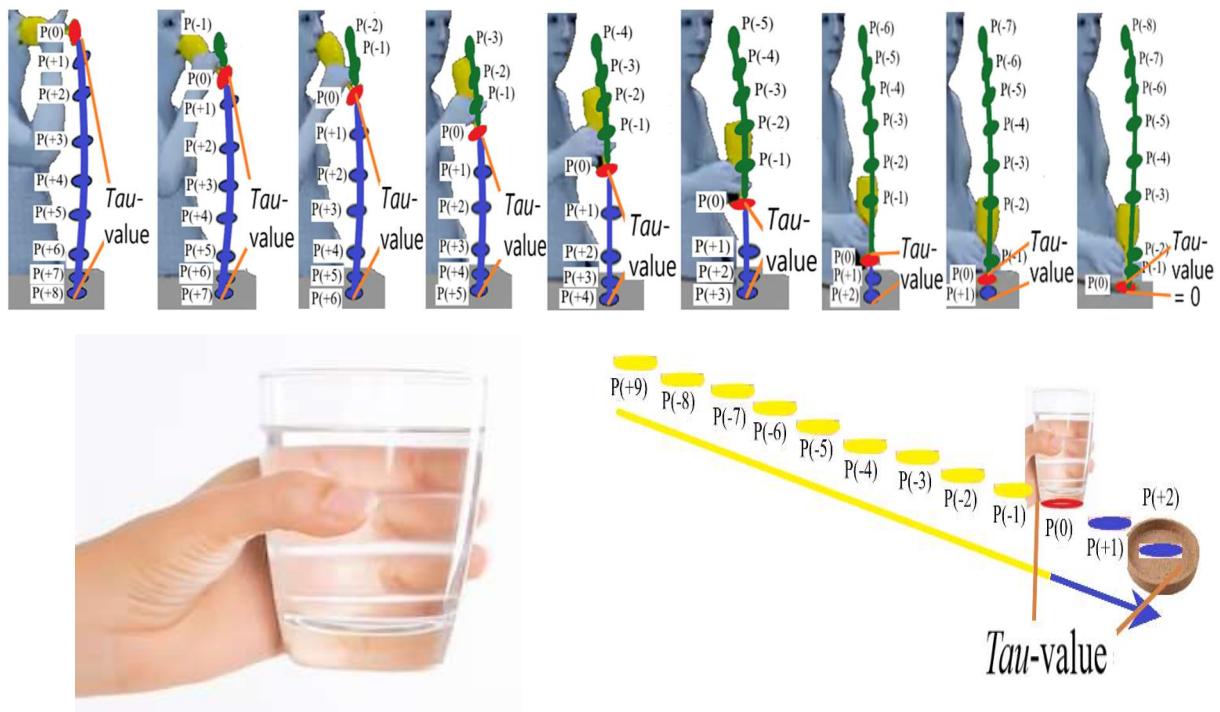
The secondary focus in relationship to the movement of a glass towards a coaster encompasses the perception of movement inside the body

When one starts to realize that the primary focus within this placing task solely concerns the movements of the (bottom of the) glass, it implicitly becomes evident that the (bottom of the) glass itself isn't capable to move at all. This analogy is strikingly similar to a ball during a free throw in basketball or various other inanimate objects like pens, tennis rackets, cricket bats, spoons, knives, bottles, pointers (pc) and more, which clearly never move on their own. But even when we grasp a coffee cup with our hand, the explanatory model demonstrates that the hand, and consequently the relevant fingertips, must also be considered as lifeless action objects. The outer layer of the fingertips does comprise living cells, but it is absolutely incapable of moving the fingertips in an action trajectory shape

<sup>7</sup> The specific reaction time concerning cortical streams in relation to the explanatory model has never been examined. General information and empirical experiences provide an indication that the reaction time is estimated to be around 0.1 seconds; "It takes about one-tenth of a second for information about the visual scene to reach the back of the brain or the occipital lobes. During the next tenth of a second, the visual information is analysed in two separate ways. Figure 2 shows the two pathways of the dorsal stream and the ventral stream. The dorsal stream runs from the occipital lobes to three locations, the back of the brain at the top (called the posterior parietal lobes), a vertical strip of brain in the centre (called the motor cortex) and the front of the brain (called the frontal cortex). The ventral stream runs from the occipital lobes to the back of the brain at the bottom (called the temporal lobes)": Cerebral Visual Impairment - Working Within and Around the Limitations of Vision; Gordon N Dutton; [http://www.liv.ac.uk/~pcknox/Publications/trimble/CVI%20chapter%20for\\_hers-Dutton.pdf](http://www.liv.ac.uk/~pcknox/Publications/trimble/CVI%20chapter%20for_hers-Dutton.pdf)

outside the body with those living cells. We can only induce movement in the outer layer of the fingertips through internal body movements. While they may approach the outer surface of the fingertips, they will always remain within the confines of the body. In the case of the placing of a glass, we can only haptically perceive the (outer sides of the) glass with the (outer surface of our) fingertips, and we can only proprioceptively<sup>8</sup> sense how movements within our body influence that haptic contact.




Images: Conversely to current science, the explanatory model of the motoric movement action demonstrates much more the universal overarching basis of all motor actions. Placing a glass with the hand is not seen differently from placing a shoe with the hand or placing a shoe with a foot. Walking thus involves the same perception processes as placing consecutive glasses, and whichever motor action is taken as an example, the stacking of two autonomous foci will always show the same universal cooperation.

Also within this motor action the essence of the task is implicitly connected to the observation of the primary focus, leading us often to be unaware of the secondary focus during many motor actions, especially when they involve simple observations like within a glass placing task. However, in highly complex motor actions, such as a tennis serve, attention is conversely only directed towards the secondary focus c.q. the serving technique. Completely ignoring the fact that the primary focus compels the realisation of an outgoing ball trajectory shape (OBT). Which is the sole essence of a tennis service. With some practice, you can consciously perceive the two foci simultaneously within many motor actions. For instance, in a grasping action, you can perceive the action trajectory shape externally while also focusing on internal movements. Which can be experienced within a glass placing task as well.

---

<sup>8</sup> Proprioceptive perception comprises two autonomous aspects: Limb Position and Movement. The explanatory model makes a clear connection between these two proprioceptive phenomena and their relation to the (bottom of the) glass within this motor action. The overall glass displacement technique is influenced by our awareness of limb position, allowing us to control the general movement of the glass towards the coaster. Where this general perception is transferred to the exact position of the (bottom of the) glass encompasses the phenomenon of movement.

Part 4 - When putting a glass down the essence of the task is solely carried out by the movements of the bottom of the glass along an action trajectory shape; The perception of the disappearance of the action trajectory shape provides the tau-value



*Caught In A Line*  
The explanatory model of all motoric movement actions

N.J. Mol  
August 2024 ©

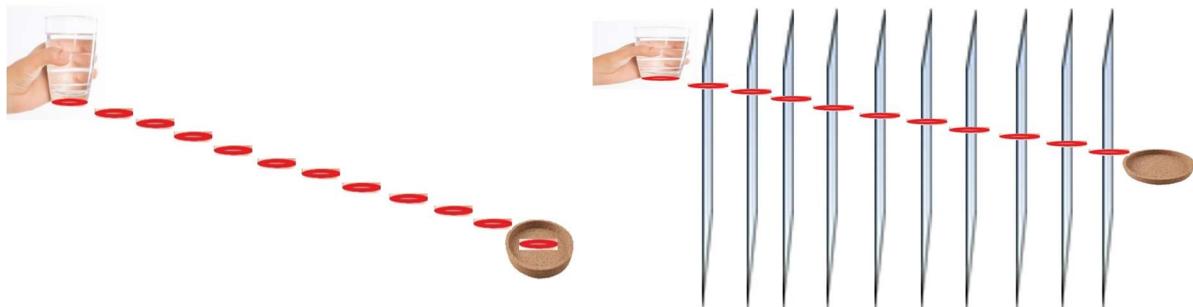
Contact: [kwilling@gmail.com](mailto:kwilling@gmail.com)  
<https://www.researchgate.net/profile/Nj-Mol/research>  
<https://www.explanatorymodel.nl/common-daily-actions/placing>

## Introduction

Traditionally, science has assumed that one motor action encompasses one focus. This assumption has seemingly been so logical that it has never been questioned. However, this has led to the absence of a plausible explanation for the functional perception processes underlying the execution of all motor actions, even after 100+ years of movement sciences. In 2016, an explanatory model emerged that is capable of identifying all functional perception processes within any imaginable motor action. With near certainty, it shows that every motor action involves the perception of three autonomous foci interacting with each other.

When placing a glass on a coaster, this interaction involves one focus that remains solely occupied with the movement of the coaster, which can be universally characterized as a catching action. The other two foci, conversely, are only concerned with the egocentric action and involve the movement of (the bottom of) the glass, which can be universally characterized as a throwing action.

Within this egocentric throwing action, scientific evidence indicates that an internal (secondary) focus must always be directed at an external (primary) focus. In relationship to which it must expressly be noted that these two foci represent entities that fundamentally differ from the current scientific terminology.


Regarding the external (primary) focus, it can be observed that science has so far missed truly everything. Therefore, it will now be comprehensively discussed within a wide spectrum of motor actions, and this publication now reveals all aspects of the primary focus within the motoric movement action *placing* (placing a glass on a coaster). Within this publication, it should become clear that the action trajectory shape within this action consists of one uninterrupted c.q. of one interconnected series of positions P of only the (bottom of the) glass and that solely the movement of the (bottom of the) glass within this action trajectory shape yields the essential *tau*-value. Which must also serve as evidence that this phenomenon occurs within any conceivable action.

Solely the movements of the (bottom of the) glass encompass the essence of the task c.q. the external (primary) focus

The category of motor actions discussed by the explanatory model involves conscious actions, where it is assumed that an egocentric will is first formulated. For example, in eating, we must first express the desire to satisfy hunger, and in writing, there must first be a need to create, for example, a brilliant book. Thus, before wanting to place a glass, there is always a desire to do so. The explanatory model of motor actions sees this as an indisputable factual given but has to criticize this assumption. The

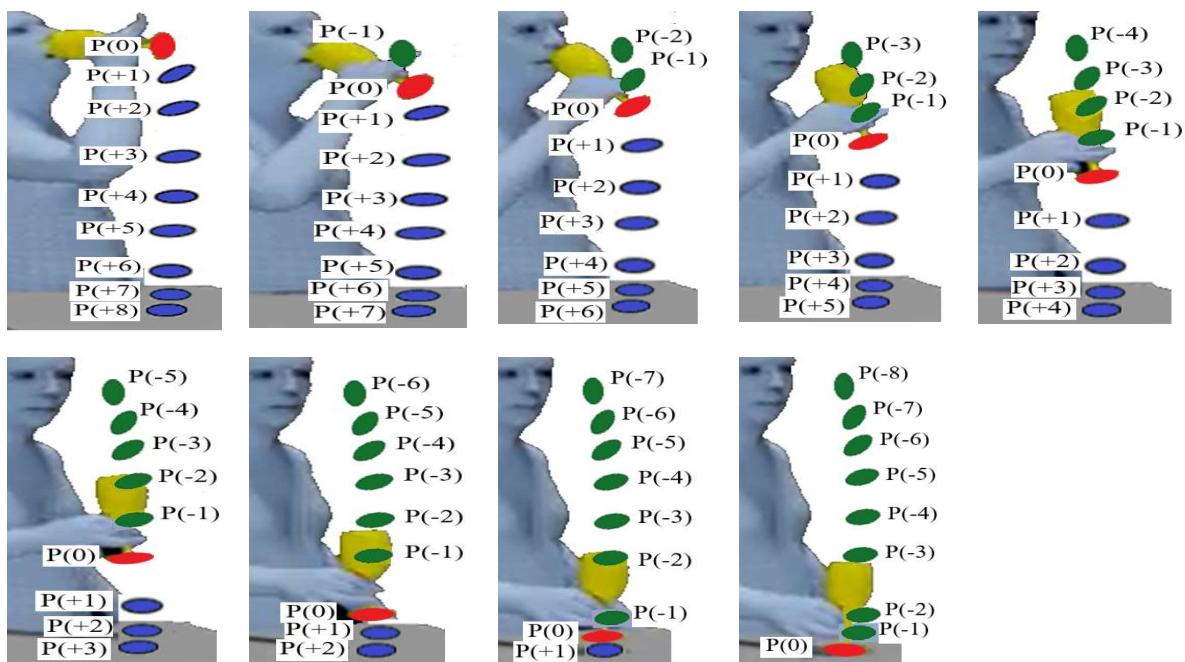
egocentrically formulated will, at the functional level, in eating is essentially not about satisfying hunger, and in writing, it is not about writing that great book. The explanatory model shows that this is factually incorrect and that we can only move food and a pen tip over an action trajectory shape towards, respectively, the mouth and across the paper when the action is actually executed. Or with other words: the desire to f.e. write brilliant articles is translated into the actual execution of that action. Analogously, we can only move (the bottom of) the glass towards a coaster, which determines the essence of that action, and therefore, only this given should be viewed as the external (primary) focus.

The tactical movement action (TMA) within placing a glass on a coaster



Images: First, an egocentric will must be formulated that we want to perform a motor action in relation to a glass and a coaster. From the current position of (the bottom of) the glass, we consecutively create a perceptual image of a latent action trajectory shape of how we will then reach the coaster (left). This happens as part of a tactical action in which two important goals are considered. First, it must lead to a successful action, and additionally, ecologically evolved organisms want to perform an action as economically as possible. The explanatory model of the motoric movement action provides scientific evidence that, although we look at obstacles (which would hinder a successful action) within the environment (right), visual perception within that context is only aimed at creating an action trajectory shape that allows an uninterrupted continuous line from positions P of the (bottom of the) glass. This means that we, beforehand, primarily perceive the positions P where there is *nothing* (!) to see, and thus, this is also the essence of the tactical action in the image on the left, where there appears to be no physical obstacles between the glass and the coaster on the (action) path.

The explanatory model of the motoric movement action demonstrates that after formulating an egocentric goal, we always engage in a tactical consideration<sup>9</sup>, prior to any execution, to determine how we can bring the action object to the goal location within successive positions P. In the context of the discussed action, we always create a perceptual image of a latent action trajectory shape, allowing the (bottom of the) glass to be moved successfully toward the coaster.




<sup>9</sup> The scientific evidence has been unequivocally provided for all grasping actions and all throwing actions, and can be easily universally extrapolated to any conceivable action. N.J. Mol; *Grasping encompasses two consecutive autonomous phases – The scientific proof that we tactically construct an action trajectory shape prior to the factual execution of that exact same action trajectory shape.*

Images: It is not straightforward to present an animation that accurately represents the latent action trajectory shape being constructed. The image on the left very clearly displays the shape of the trajectory, in which all contiguous points  $P$  are distinctly weighed. However, it does not illustrate that within the construction of the trajectory shape, all dimensions of the (bottom of the) glass are also precisely weighed, as shown in the image on the right. The perceptual image we pre-construct of the trajectory might possibly contain a hybrid blend of these two animations.

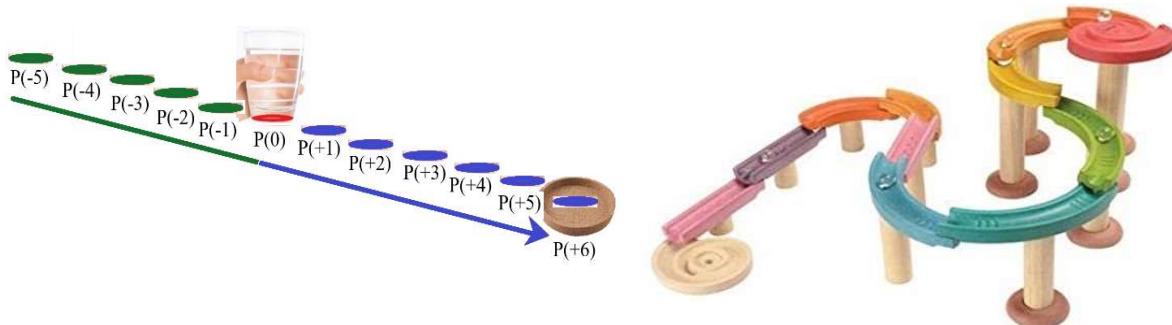
#### The factual movement action (FMA) within placing a glass on a coaster

After determining a perceptual image of a latent action trajectory shape, we proceed to actually carry out the action. This process effectively starts with bridging the gap from the current position of the (bottom of the) glass  $P(0)$  to the next position  $P(+1)$  within the action trajectory. Although our ultimate intention of course is to reach the coaster, the explanatory model clearly demonstrates that our perception processes in this phase are solely focused on traversing the empty space between the (bottom of the) glass and the coaster. Which at a micro-level shows, that essentially only the positions  $P(-1)$ ,  $P(0)$ , and  $P(+1)$  matter to us during this bridging process.



Images: In an animation, the progression within an action trajectory shape can be depicted as follows. Within any conceivable action, the action object can successfully execute the action only by first occupying the next position  $P(+1)$  within the action trajectory. The current position  $P(0)$  then shifts one step forward, and a manifest position  $P(-1)$  is added. This process repeats with every new position  $P(0)$  until the end of the action trajectory is reached. To comprehend the perception processes at the most fundamental level it is of the utmost importance that you start to understand that the latent part of the action trajectory shape will factually need to sprout from the already manifest positions  $P(-x)$ .

#### The perception-action coupling within placing a glass on a coaster

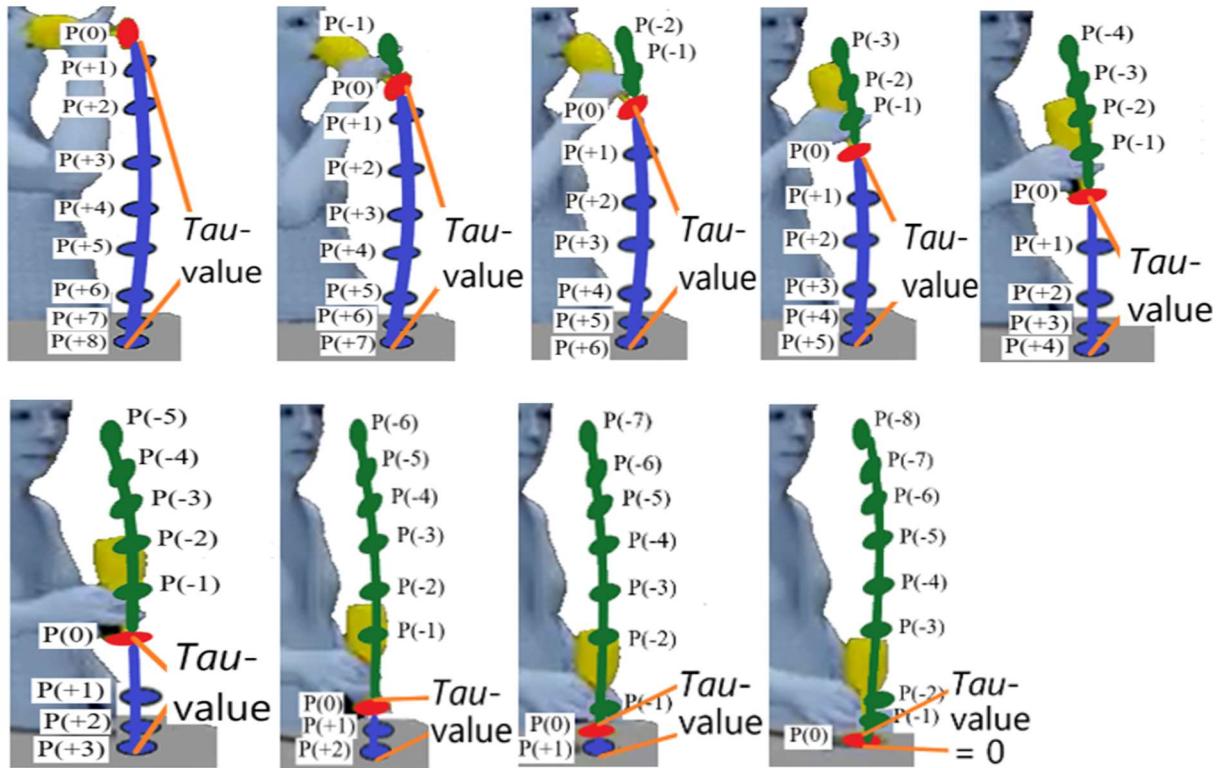

With the preceding argumentation, the explanatory model of the motoric movement action now provides a comprehensive and universal explanation of how perception is linked to action within any conceivable task. The animations in the previous section illustrate that the action object maintains a fixed relationship with the perceptual image of the action trajectory shape. This becomes easier to comprehend when envisioning a marble in a marble run. In this analogy, you will become much more aware

that the perception-action coupling is a unified phenomenon where only a single change occurs every ongoing time span. Within the marble run it becomes quite visible that during the actual execution, each position  $P(0)$  serves as the precise separation between all already manifested positions  $P(-x)$  and the latent positions  $P(+x)$  yet to be traversed.

Through this explanation of the perception-action coupling, the explanatory model can precisely demonstrate how organisms must have evolved within an ecological framework. However, delving into this subject exceeds the scope of this publication. Instead, several crucial points will be highlighted concerning the functional perception processes within this motor action.

It's imperative to recognize that while the ultimate goal is to reach the coaster, during the execution of the action, we are solely engaged in bridging the (bottom of the) glass through empty space where seemingly nothing is happening. It can be observed within any conceivable action that we spend relatively more time bridging this nothingness than in actual observable activity. The explanatory model, however, unequivocally shows that not only the end goal matters, but all positions  $P$  between the (bottom of the) glass and the coaster are equally significant.

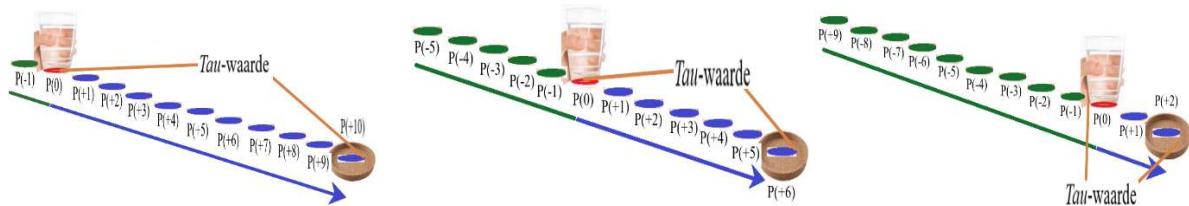
Additionally, it must be remarked that the action of the (bottom of the) glass at  $P(0)$  can be perceived distinctly, yet no fixed unit of time can be attributed to it. Each unit of time can be divided into a thousand smaller units, and these units can be further subdivided, leading the explanatory model to argue that the action at  $P(0)$  fundamentally takes such a brief time span that it only gains significance in relationship to perceptions of the adjacent time frames. In other words, perceiving the current position of the (bottom of the) glass solely gains meaning through the adjacent future "actual" positions  $P(+x)$  and the adjacent manifest "actual" positions  $P(-x)$  of the (bottom of the) glass. Within which the overarching idea is to emphasize that perceptions within any conceivable action mainly pertain to one single phenomenon wherein the perception of the action also compels a perceptual image, but primarily that they are absolutely interdependent.




Images: Within many motoric actions the action trajectory shape will not become visible, making it challenging to depict with animations. Conversely, the marble within the marble run, is capable to vividly illustrate this concept. It clearly showcases one single phenomenon wherein the marble, at each position  $P$ , delineates the precise separation between all already manifested positions  $P(-x)$  and all latent positions  $P(+x)$ . Additionally, it exemplifies one of the essences of the (perception-action) coupling. If we couldn't perceive the marble run, the movements of the marble would lack essential context, and conversely, without the marble, we would be completely unable to perceive any coupling as well. There is a compelling interdependent relationship, and without that coupling, we would never, under any circumstances, be able to execute any motoric movement action.

#### The $\tau$ -value in relationship to placing a glass on a coaster

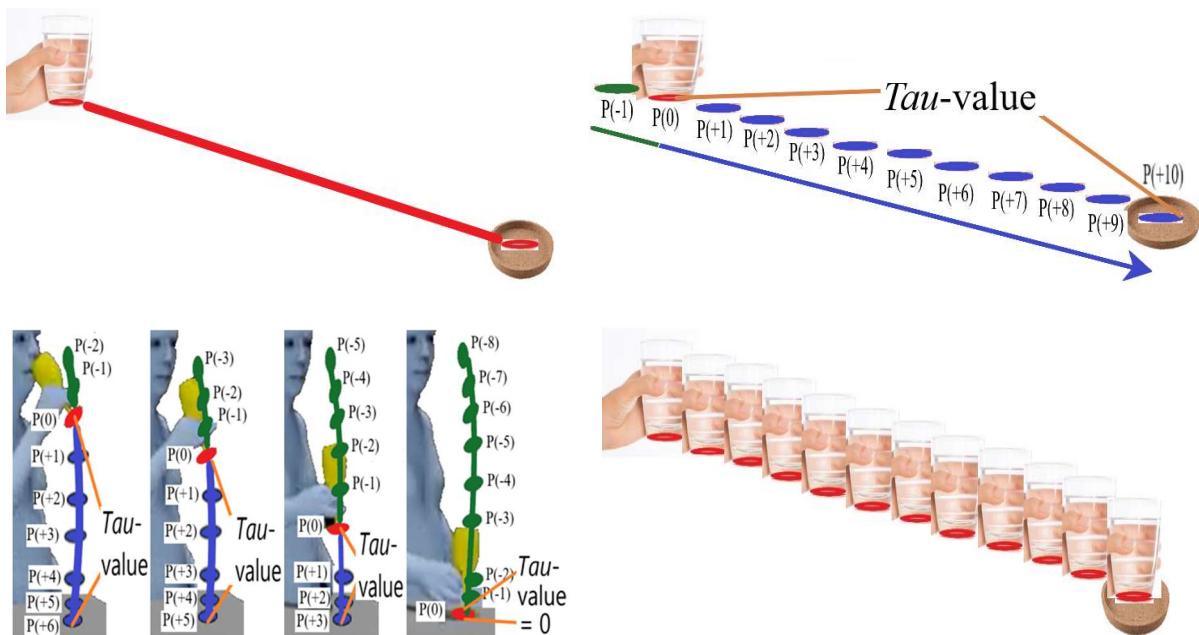
The explanatory model of the motoric movement action demonstrates with the aforementioned perception-action coupling that the perception of each position of the (bottom of the) glass c.q. the action object within the action trajectory shape is equally important. However, as the (bottom of the) glass approaches the end of the action trajectory shape, the task c.q. the egocentrically formulated goal starts to become finalized. Within any imaginable motor action, the action object will universally traverse the


action trajectory shape until there are no latent positions P left. Within his *tau*-coupling theory, D.N. Lee referred to this phenomenon as the closing of the gap c.q. as the *tau*-value approaching to zero.



Images: Within the perception-action coupling, the (bottom of the) glass will traverse all latent positions P that are tactically predetermined within a perceptual image of an action trajectory shape. With each successive position P of the (bottom of the) glass, the *tau*-value will decrease, until it eventually approaches zero c.q. becomes zero.

#### The perception of the *tau*-value in relationship to placing a glass on a coaster


Perceiving the *tau*-value within the external (primary) focus is an essential process because, within a strict *tau*-coupling, it needs to establish a compelling relationship with the internal (secondary) focus to ensure the success of the action. When it is observed that the (bottom of the) glass is approaching the coaster, the perception within the internal focus must ensure that the bodily movements related to the movement of the (bottom of the) glass are appropriately slowed down and adjusted so that the (bottom of the) glass neatly reaches the coaster.



Images: The *tau*-value can be perceived in two autonomous ways. You can either observe how the green manifest action trajectory shape takes over the blue line or at the most basal level you could solely observe with what speed the blue line, representing the still latent action trajectory shape, is disappearing. Within which you factually solely observe how the latent (blue) gap is closing.

Perceiving the *tau*-value approaching to zero can be observed in two autonomous ways. The first way involves filling in the perceptual representation of the entire latent action trajectory shape with the manifest positions P of the (bottom of the) glass. In animations, this should be depicted as the green line taking over or filling in the blue line. The other way involves a much more fundamental way of perceiving the *tau*-value. In contrast to the first way, this is solely based on the disappearance of the latent positions P from the perceptual representation of the entire latent action trajectory shape. Which means that you solely observe with what speed the blue line disappears.

Part 5 - Executing an external action trajectory shape along which the (bottom of the) glass moves dictates all internal sensorimotor perception processes; The *tau*-coupling process when placing a glass on a coaster demonstrates that we absolutely do not need a motor plan



*Caught In A Line*  
The explanatory model of all motoric movement actions

N.J. Mol  
August 2024

Contact: [kwillinq@gmail.com](mailto:kwillinq@gmail.com)

<https://www.researchgate.net/profile/Nj-Mol/research>

<https://www.explanatorymodel.nl/common-daily-actions/placing>

## Introduction

When we want to place a glass on a coaster, the explanatory model of the motoric movement action has demonstrated that only the movement of the bottom of the glass<sup>10</sup> embodies the core of the task and thus the essence of our egocentric intention. In which scientific evidence has been provided that, prior to the actual execution of any conceivable action, we first create a perceptual image of an entire latent action trajectory shape along which we can successfully move all dimensions of the action object<sup>11</sup>, in this case, the bottom of the glass, towards the coaster<sup>12</sup>.

However, science has so far completely missed all the essentials regarding the action trajectory shape and only indirectly noticed that (action) paths are formed between the end effectors c.q. the action object, and the goal of the action. While it can be quickly established that all positions P of an action object are invariably constrained within one single line segment shape within any conceivable motor action. This should have led to several revolutionary insights:

1. Factually, the action object invariably fills an action trajectory shape in the same way as a marble moves within a marble run, in which the perception of the marble's current location always marks the exact boundary between the manifest and latent parts of the perceptual image of the action trajectory shape.
2. All latent positions P of the action object effectively always have to sprout from the manifest positions P, or effectively always have to originate from the manifest part of the action trajectory shape.
3. Within the action trajectory shape, it factually always becomes apparent when the action is coming to its end due to the perception of the disappearing of the complete latent action trajectory shape c.q. the *tau*-value approaching to zero<sup>13</sup>.

---

<sup>10</sup> When placing a glass, one should actually divide the glass into two parts: 1. The bottom side of the glass and 2. The part where we hold the glass. This works exactly like eating with a spoon. The action trajectory shape within the primary focus is formed by the bottom side of the glass that will factually touch the coaster and is analogous to the spoon bowl that ends up in the mouth. The glass is usually held at the sides, similar to holding the handle of the spoon.

<sup>11</sup> Science and the explanatory model of the motoric movement action use the terms 1. end effector and 2. action object for the same phenomenon. For example, in eating with a spoon, science refers to the spoon bowl as the end effector, whereas the explanatory model designates the spoon bowl as the action object. The action object in placing a glass is solely the bottom of the glass.

<sup>12</sup> [https://www.researchgate.net/publication/382877620\\_When\\_putting\\_a\\_glass\\_down\\_we\\_first\\_create\\_a\\_perceptual\\_image\\_of\\_a\\_latent\\_action\\_trajectory\\_shape\\_out\\_of\\_the\\_perspective\\_of\\_the\\_bottom\\_of\\_the\\_glass\\_-The\\_scientific\\_evidence](https://www.researchgate.net/publication/382877620_When_putting_a_glass_down_we_first_create_a_perceptual_image_of_a_latent_action_trajectory_shape_out_of_the_perspective_of_the_bottom_of_the_glass_-The_scientific_evidence)

<sup>13</sup> [https://www.researchgate.net/publication/382877724\\_When\\_putting\\_a\\_glass\\_down\\_the\\_es-sence\\_of\\_the\\_task\\_is\\_solely\\_carried\\_out\\_by\\_the\\_movements\\_of\\_the\\_bottom\\_of\\_the\\_glass\\_along\\_an\\_ac-tion\\_trajectory\\_shape\\_The\\_perception\\_of\\_the\\_disappearance\\_of\\_the\\_action\\_t](https://www.researchgate.net/publication/382877724_When_putting_a_glass_down_the_es-sence_of_the_task_is_solely_carried_out_by_the_movements_of_the_bottom_of_the_glass_along_an_ac-tion_trajectory_shape_The_perception_of_the_disappearance_of_the_action_t)

However, although the explanatory model demonstrates that the perception of the movement of the action object within the perceptual image of a latent action trajectory shape encompasses an autonomous phenomenon and thus exclusively is going to perform the essence of the task, the explanatory model also clearly shows that the action object itself absolutely isn't capable to move on its own. Even when grasping with the fingertips, the explanatory model shows that the movement of the fingertips along an external action trajectory shape on the outside of the body can't be moved by the outside of the fingertips themselves. So even within grasping, the movement within the external (primary) focus can only be executed with movements that must always be perceived within the body, within the internal (secondary) focus. In the current action, where the (bottom of a) glass moves far outside the body towards a coaster, this insight will be easily recognized and one can easily determine that the (bottom of the) glass can only be moved over an external action trajectory shape with movements within the body that only reach up to the sides of the glass<sup>14,15</sup>.

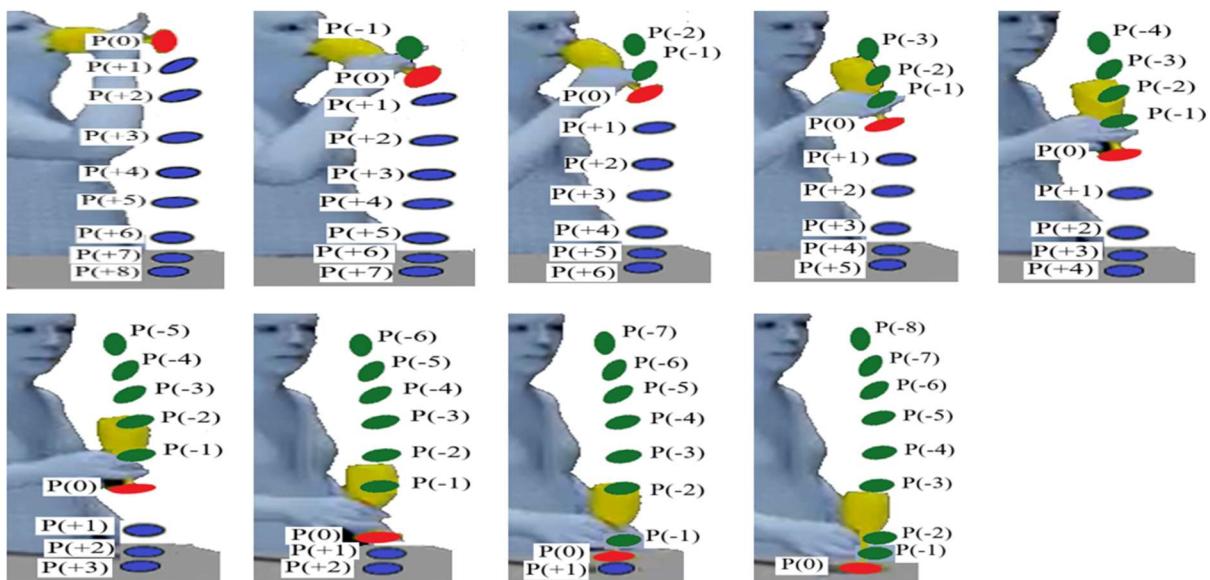


Images: The explanatory model of the motoric movement action shows, beyond any reasonable doubt, that there is no need for a motor plan to initiate an action. It demonstrates that all sensorimotor perception processes within the internal (secondary) focus simply need to follow the lead of the external (primary) focus. This clarification, which does not require any hierarchy, underscores our freedom from being tied to specific sensorimotor movements and this perspective is in perfect alignment with an ecological approach to motor actions.

In summary, this leads to the conclusion that the phenomenon of the perception-action coupling is solely related to the perception of movement within the external (primary) focus. Only within this focus, a perceptual image, consisting of the future positions  $P$  of the action object, is filled by the future actual positions of that exact same action object. Also, only within this focus, the *tau*-value can be perceived. This publication now explains how the perception of the *tau*-value should be linked to the internal (secondary) focus and extensively discusses the consequences this has for the perception processes within the internal (secondary) focus c.q. for all sensorimotor actions.

#### A universal *tau*-coupling is present within every conceivable motoric action

The explanatory model, in conjunction with previous publications, demonstrates that the *tau*-value can be universally observed within any conceivable action. This aligns with the findings of D.N. Lee, who showed that in many actions, a gap c.q. a line segment shape between the action object and the end


<sup>14</sup> [https://www.researchgate.net/publication/382877716\\_Placing\\_a\\_glass\\_on\\_a\\_coaster\\_requires\\_a\\_compling\\_collaboration\\_between\\_an\\_internal\\_and\\_an\\_external\\_focus\\_-\\_The\\_sequential\\_positions\\_of\\_the\\_bottom\\_of\\_the\\_glass\\_determine\\_the\\_primary\\_focus](https://www.researchgate.net/publication/382877716_Placing_a_glass_on_a_coaster_requires_a_compling_collaboration_between_an_internal_and_an_external_focus_-_The_sequential_positions_of_the_bottom_of_the_glass_determine_the_primary_focus)

<sup>15</sup> This intriguing dualism demands our utmost attention as it presents the essence of our perception processes. The internal (secondary) focus not only meticulously tracks the movement of the action object within the action trajectory shape but is also the instigator of this movement. It might sound paradoxical that the very action you initiate creates your own reliance. However, this is precisely what occurs because it is an implicit fact that when you move something inside your body, an external part of your body will inevitably move within an action trajectory shape on the outside of your body.

goal<sup>16</sup> gradually approached zero and eventually completely disappeared. While Lee's discovery generated significant interest in the scientific community, a major breakthrough remained elusive. Lee connected this crucial *tau*-value to various irrelevant other possible *tau*-values without realizing that two foci could be distinguished and linked within the egocentric throwing action itself. However, this insight proved to be highly relevant for the explanatory model of the motoric movement action. By understanding that the movement of an action object along an action trajectory shape outside the body is a completely autonomously observable phenomenon and can only be executed by a completely different autonomously observable phenomenon within the body, it is now possible to explain precisely which phenomena should be connected and how the *tau*-coupling is established. The perception of the *tau*-value approaching zero within the external (primary) focus should ultimately guide the observations within the internal (secondary) focus.

#### The *tau*-coupling when placing a glass on a coaster

At the beginning of this action, the coaster is usually at such a distance from the (bottom of the) glass that, after a short, probably slightly slower executed initial phase, the (bottom of the) glass must first traverse a relatively long distance during which it appears that nothing noteworthy occurs. Although the explanatory model of the motoric movement action demonstrates that bridging this apparent nothingness by the (bottom of the) glass requires significant cognitive processes, with the cortical streams playing a crucial role, the egocentrically formulated intention will only be finalized at the end of the action trajectory.



Images: Before we proceed to place a glass on a coaster, a perceptual image is constructed of a latent action trajectory shape, along which the bottom of the glass is capable to successfully reach the coaster. By observing the illustrations, it can be objectively determined that only the bottom of the glass fills this action trajectory, thus exclusively embodying the essence of the task. Furthermore, it is objectively ascertainable that the bottom of the glass moves akin to a marble in a marble run, where the current (red) position  $P(0)$  of the bottom of the glass always precisely demarcates the separation between the manifest (green) and latent (blue) segments. The disappearance of the latent segment of the action trajectory shape can be perceived in two ways: one can observe how the green (manifest) part supplants the blue (latent) part of the action trajectory or, in a more fundamental sense, one need only observe the speed at which the blue segment vanishes c.q. at which the blue gap closes.

<sup>16</sup> In the original work, examples include a long jump athlete running towards the take-off board, a Northern Gannet diving toward the water surface, and a bee heading towards a flower.

While it may appear that only the end of the action trajectory is crucial, the explanatory model is clear: the bridging process of every position P of the bottom of the glass towards the coaster is equally vital for success. The finalization of the action and the bridging process are, in fact, two distinct phenomena that must be successfully executed sequentially. One can never reach a successful conclusion if the bridging phase has not been successful as well.

However, the successful completion of the end is also crucial to make an action succeed, and it stands or falls with perceiving that the *tau*-value, within the external (primary) focus, approaches zero. Then, within the internal (secondary) focus, adjustments to the movements of the bottom of the glass must be made so that the glass is precisely slowed down to gently touch the coaster. In such a way that the action is executed briefly but that no contents is spoiled or the glass get broken. So, within many motor actions, it can be observed that after a phase of relative acceleration during the bridging phase, there is a relative deceleration of the action object as the end of the action approaches<sup>17</sup>.

#### The perception of the motoric movements on the inside of the body within the internal (secondary) focus while manipulating the bottom of the glass over an external action trajectory shape

The explanatory model of the motoric movement action presents a completely new paradigm. It's built on the factual observation that an autonomous internal movement of any organism will implicitly lead to an autonomous external movement of the outside of that organism. In which it is also a fundamental fact that the movement of any given position P on the outside of that organism will need to sprout out of each other c.q. that all those positions P will always be interconnected. Which factually means that they will always create a line segment shape. So the most important conclusion reveals that these two movements are implicitly connected, but that the perception processes mediating these movements are completely autonomous and independent of each other<sup>18</sup>.

This aforementioned clarification doesn't pertain to the paradigm itself but to its foundation. In regard to which the explanatory model notes that these phenomena occur regardless of which focus you centralize. However, the new paradigm lies in the novelty that you can fully execute a motor action by focusing solely on creating and completing an external action trajectory shape. In contrast to the idea that early organisms primarily started by emphasizing arbitrary motor movements within the body and then observing the external result, the explanatory model states that these roles have now been completely reversed after millions of years of evolution. So when placing a glass on a coaster, we primarily perceive the dominant movement of the bottom of the glass within the external (primary) focus and guide its progress with motoric movements within the internal (secondary) focus, which only reach the outer sides of the glass.

---

<sup>17</sup> As explained in this section, the explanatory model underpins the notion that within many motoric actions a bell-shaped profile is capable to occur when plotting the execution speed of an action against time in a graph. In many actions, it is indeed typical that after a short initiation phase, a smooth and faster bridging phase occurs, followed by a more precise phase towards the end. Although the model generally supports these principles, it doubts the emergence of a highly proportional bell shape in all cases. Additionally, the explanatory model illustrates that this is certainly not the case for all actions. In situations where you need to create a crescendo at the end of the action, such as clapping your hands or defending against an attacker with a punch or a kick, you must accelerate the relevant body parts in the final phase. Similarly, in many ball sports, achieving a necessary "crescendo" can only be accomplished if, after an initial relatively slower catching phase, you maximize acceleration of the ball towards the end of the action trajectory shape.

<sup>18</sup> While the explanatory model of the motoric movement action has a strong suspicion that the earliest organisms initially engaged in random motor movements, it demonstrates that after millions of years of evolution, the of internal and external roles have reversed. It's much more efficient for organisms to work from an action trajectory shape rather than relying on random motor movements. Creating an action trajectory shape, for instance, from the fingertips to a coffee cup or from a spoon to a soup bowl, is by far more effective and efficient than repeatedly generating random internal movements with the hope that the fingertips will by chance reach the coffee cup or the spoon will reach the soup.

Thanks to this new paradigm, the explanatory model of the motoric movement action is now capable of identifying all functional perception processes within any conceivable motoric action, thus enabling it to describe all sensorimotor perception processes within any conceivable motoric action. In this section, a list of the most crucial insights will be outlined, with a focus on challenging many prevailing assumptions within the scientific community.

a. Visuomotoric perception processes

Of course, science views both visual perception and motor action as essential in executing actions, assuming they share a close relationship. Which, out of a single-focus perspective, led to the rather artificial birth of the term *visuomotoric* perception processes. While one might argue that the term provided some direction in scientific thinking, its content remained vague and never led to any significant consensus.

The explanatory model now emphatically reveals that this term represents an erroneous way of thinking within the scientific community and that it must be expunged from the realm of scientific discourse. The explanatory model effectively illustrates that, in practice, when visual perception comes into play, its exclusive role is to contribute to the perception-action coupling taking place within the external (primary) focus, and has no bearing whatsoever within the internal (secondary) focus. In plain terms, visual perception, by itself, will never induce any movement.

b. Sensorimotoric perception processes

Just like the concept of visuomotoric perception processes, science introduced the term *sensorimotoric* perception processes. In contrast to the previous paragraph, the explanatory model provides a significantly broader description in regard to those sensorimotoric processes than previously presumed in the scientific community and shows unequivocally that we even can execute motoric actions solely through proprioceptive perception, expanding our capabilities beyond what science has traditionally acknowledged. Many actions can be executed with ease, albeit less efficiently, in complete darkness or without any visual input<sup>19,20</sup>. Consider activities like clapping your hands behind your back, unlocking a door with a key at night, or swatting an annoying mosquito behind your ear. In all these actions, the *tau*-value within the external (primary) focus can be entirely perceived proprioceptively<sup>21</sup>.

Additionally, the explanatory model unmistakably reveals that within any conceivable action, an external (primary) focus, operating within a strict *tau*-coupling process, can only be executed by an internal (secondary) focus. It highlights that this secondary focus is exclusively perceived within the body, and therefore, all perceptions within this focus are inherently of a sensorimotoric nature.

c. The internal (secondary) focus has an indispensable interdependent relationship with the external (primary) focus.

---

<sup>19</sup> Motoric displacement actions from point A to point B, such as walking, cycling, rowing or car driving, can hardly be executed without visual input. However, a person with 100% visual impairment is perfectly capable to navigate through their home freely and by foot travel significant distances outside using a cane. This cane vividly demonstrates that our perception processes are not solely focused on reaching point B but are also deeply engaged in the bridging process. With the cane, the individual is essentially "observing" (feeling) whether the next position P (+1) within the perceptual image of the latent action trajectory shape, is accessible and can be occupied by their body. This observation mirrors what was mentioned earlier regarding the spoon's journey towards the mouth or towards the plate of soup.

<sup>20</sup> Think also of inserting a car key into the ignition. In an unfamiliar car, we need visual perception several times initially to create an action trajectory shape, but after a few repetitions, we do it entirely blindly.

<sup>21</sup> [https://www.researchgate.net/publication/342715828\\_The\\_complete\\_functional\\_explanation\\_of\\_limb\\_position\\_and\\_movement\\_in\\_relationship\\_to\\_the\\_proprioceptive\\_perception\\_-\\_The\\_behavioural\\_perception\\_processes\\_within\\_clapping\\_behind\\_your\\_back](https://www.researchgate.net/publication/342715828_The_complete_functional_explanation_of_limb_position_and_movement_in_relationship_to_the_proprioceptive_perception_-_The_behavioural_perception_processes_within_clapping_behind_your_back)

So, the explanatory model revolves around an entirely new paradigm, which reveals that within the execution of a single action, implicitly two autonomous foci arise in relation to two autonomous movements. These two autonomous foci must enter into a mandatory collaboration to accomplish the action successfully. The collaboration involves the motor processes within the internal (secondary) focus, which alone can enable the action object to move, compellingly following the movement within the external (primary) focus. When one is first confronted with this concept, it may evoke an extremely paradoxical feeling. How can a phenomenon that is inherently essential to the action and only solely can ensure the action's success be so dependent on another autonomous phenomenon that it itself brings to life? However, with further contemplation, one will come to realize that it is a remarkable evolutionary discovery and that it provides an explanation for all functional perception processes within any conceivable motor action. Moreover, the explanatory model clearly elucidates how this phenomenon must have developed from the earliest stages of evolution, but further details are omitted here for the sake of brevity<sup>22</sup>. It is emphasized that these two phenomena are entirely interdependent, and without either one, no motor action can be successfully executed.

**d. No motor plan and no hierarchy**

If the scientific community were to acknowledge that the perception of the movement of an action object within an action trajectory shape, within the external (primary) focus, has the capability to guide the entire execution of any conceivable motoric action, several challenges within science would be resolved immediately. If it were accepted that, prior to the execution of a motor action, we create an all-encompassing and directing perceptual image of an external latent action trajectory shape, the need for a motor plan would instantly disappear. Which would lead to the understanding that all sensorimotor movements simply serve the external (primary) focus, and as a result, there would be no need to recognize hierarchy within the sensorimotor structure. Then all sensorimotor activity can hierarchically be regarded at the exact same level which just obediently have to carry out the task within the external (primary) focus.

**e. The explanatory model reflects an optimal ecological approach**

In the current scientific paradigm, there is a consensus that motor planning exists, but there is absolutely no agreement on how such a motor plan is developed. While it's acknowledged that creating a motor plan demands more cognitive capacity from an organism, it essentially reveals that, even after many decades, there is no clear answer to this question. An important, unanswered scientific question is how a motor plan adapts when a sudden change occurs during an action. Which also leads to the pressing follow-up question of how more primitive organisms can cope with such situations.

The explanatory model of the motoric movement action demonstrates that perceiving the *tau*-value, despite its inherent complexity, can be distilled into a very simple universal phenomenon. Which is also explained in the context of placing a glass on a coaster<sup>23</sup>. To perceive the *tau*-value, all you need to do is register the speed at which the latent part of the perceptual image of the entire action trajectory

---

<sup>22</sup> In future publications, where the precise role of the cortical streams in regard to this phenomenon will be explained, this evolutionary development will be further elucidated. In brief, the explanation will demonstrate that organisms initially started with just random (!) movements within their bodies to move a part of the external body somewhere. After millions of years, we 1. realized that this specific external body part, like a marble in a marble run, fills an external action trajectory shape, and 2. gained a solid understanding of the involved motoric movements. This understanding allowed us to reverse the roles, shifting from initiating movements from inside the body to initiating them from the outside. This line of thinking even goes so far as to suggest that the cortical streams within an organism have evolved evolutionarily to precisely mediate this relationship of a marble-marble run in a double and reciprocal process.

<sup>23</sup> <https://www.researchgate.net/publication/382877724> When putting a glass down the essence of the task is solely carried out by the movements of the bottom of the glass along an action trajectory shape The perception of the disappearance of the action t

shape disappears. Essentially, this amounts to a straightforward observation of the disappearance of a two-dimensional line segment.

Subsequently the explanatory model reveals that the internal (secondary) focus can align itself with the external (primary) focus as a whole, without any rigid hierarchy. This simplifies the observation of the *tau*-coupling process to such an extent that, within an ecological framework, it's hard to surpass and which concept can also be applied to the earliest organisms.

f. The motoric movements toward the sides of the glass are perceived proprioceptively

The explanatory model clearly demonstrates that the internal (secondary) focus is exclusively perceived within the body, highlighting that there is no involvement of visual perception in this process. The internal (secondary) focus can only be proprioceptively perceived. You can practically verify this when placing a glass on a coaster by covering everything except the bottom of the glass. As long as the bottom remains visible, it will have no impact on the action.

g. Hybrid (proprioceptive) perception processes

A significant shortcoming in scientific research pertains to the notion that motor actions are always executed with roughly the same sensorimotor perception processes. The explanatory model reveals a universal framework, but it clearly demonstrates as a novelty that often multiple constellations of perception processes are involved within the execution of the same motoric action and that we are capable to endlessly, *ecologically* (!), vary within this realm.

For example, when in pitch black darkness, we bring our (non-glass-holding) hand to a coaster, we can successfully move the (bottom of the) glass to the coaster using solely proprioceptive perception within the external (primary) focus c.q. we can successfully move the (bottom of the) glass along a perceptual image of a latent action trajectory shape using solely proprioceptive perception processes. So even if it then appears that we perform this motoric action with only visual perception in broad daylight, that's factually incorrect. In broad daylight visual perception processes may dominate, but proprioceptive perception processes will never disappear and will always be present in some hybrid form. So actions we perform during the day with relatively many visual perception processes are always executed proprioceptively as well. Thus, while we see the (bottom of the) glass approaching the coaster, we also *feel* (!) the process of constructing the action trajectory shape.

Within the internal (secondary) focus, it's no different. You can quickly observe that you could move the (bottom of the) glass solely with torso action or even with just a walking action if you were to keep the entire arm rigid. In this way, you could even make it move with just upper arm and/or forearm action. Additionally, you can promptly realize that you could use a relatively large amount of hand or finger action. Which, in short, indicates that you might have developed your own preferred motor skills when placing a glass on a coaster, but they will always consist of an ever-evolving combination of hybrid sensorimotor perceptions. Due to the fact that such a complex phenomenon is involved will never allow an identical configuration of perception processes to arise.

Upon which the explanatory model of all motoric movement actions again hastily wants to add that these hybrid possibilities in the utmost harmony align within an ecological approach and that a parsimonious organism would never have strived to achieve identical executions.

h. Optimization process

The explanatory model of the motoric movement action demonstrates that a motoric action can only be executed by the stacking of two autonomous foci and shows within the previous paragraph that the perception of movement within the internal (secondary) focus is inherently of such a high complex nature that it will definitely prevent the occurrence of an identical internal configuration to occur.

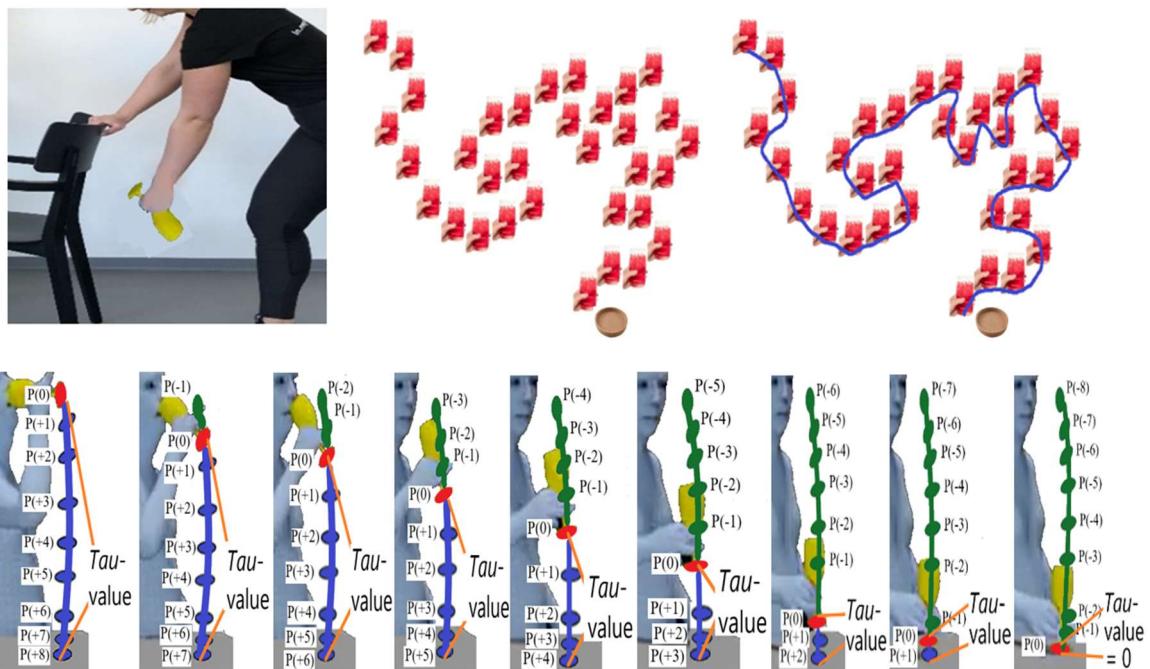
Consequently this will cause that the action object is capable to and definitely shall deviate from the perceptual image of the latent action trajectory shape at each progressing point P and even though the cortical streams ingeniously mediate this process, it's empirically evident that an identical execution of any action trajectory shape is unattainable. This unequivocally portrays that performing any conceivable action can only be viewed as an optimization process. Hence, you will never be able to make the (bottom of the) glass move identically. Instead, you solely can optimize the perceptions within both foci, which also allows you to perform actions in a very successful manner but in ever-varying ways.

i. Within the internal (secondary) focus the line and shape within the line segment shape of the action trajectory demand autonomous perception processes; Solely the line generates the *tau*-value

The explanatory model of the motoric movement action demonstrates, beyond any reasonable doubt, that we do not (need to) create motor plans and that all sensorimotor processes can be compellingly guided by the external (primary) focus. But if a motor plan would have been necessary, science would still have remained remote from a breakthrough, as sensorimotor processes must accompany two autonomous phenomena within the action trajectory shape that have never been recognized in science. The frequently used compound term "action trajectory shape" is in fact a line segment shape and encompasses two autonomous components: the line and the shape. The explanatory model illustrates that they are perceived entirely separately but simultaneously. For experts, this is clearly recognizable within any conceivable action. However to make it comprehensible for everyone, these phenomena are explained within the context of the motoric movement action *car driving* (or riding a bicycle) since this action inherently contains the scientific evidence of these two autonomous perceptions.



Images: In the case of a car and a bicycle without hand brakes, only the steering wheel can compensate for deviations in the width of the action trajectory shape, and the pedals can only compensate for deviations in the length of the action trajectory shape.


When driving a car, it becomes immediately evident that one can exclusively influence the movement within the shape (!) of the action trajectory with the steering wheel. This defines the explanatory model as mediating the deviations in the y-axis. Additionally, it should also become immediately clear that with the pedals, one can exclusively influence the movement within the line (!) of the action trajectory. This defines the explanatory model as mediating the deviations in the x-axis<sup>24</sup>.

So, when driving a car, it becomes crystal clear that perceiving (and controlling) the shape has absolutely nothing to do with perceiving (and controlling) the line. In which it is essential to mention that perceiving the filling of the latent line (within the x-axis) by the manifest places P of the action object within the external (primary) focus solely involves the *tau*-value which within car driving is solely executed by the pedals. Solely the speed with which the line is filled determines the duration of the action c.q. determines the finalization of the action.

<sup>24</sup> The same explanation naturally applies when considering a bicycle with coaster brakes.

The explanatory model of the motoric movement action demonstrates that the perception of movement within the internal (secondary) focus in any conceivable action, including the current placing of a glass operation, contains the same x- and y-axis components. Although it places greater demands on the development of an organism, conversely, it can be shown to fit perfectly within an ecological approach. The dichotomy, where a separate x- and y-axis component is distinguished, can actually deliver the final breakthrough in the understanding of why we are capable to reduce very complex perception processes to the perception of such trivial and simple phenomena. The mere perception of the x-axis can be traced back to simply perceiving how the latent part of the perceptual image of the latent action trajectory disappears.

Part 6 - The bottom of the glass isn't capable to move by itself along an action trajectory shape; Scientific evidence of the implicit occurrence of an internal and external focus during random motor activity and how their roles evolutionary have reversed within placing a glass on a coaster



*Caught In A Line*  
The explanatory model of all motoric movement actions

N.J. Mol  
August 2024

Contact: [kwillinq@gmail.com](mailto:kwillinq@gmail.com)

<https://www.researchgate.net/profile/Nj-Mol/research>

<https://www.explanatorymodel.nl/common-daily-actions/placing>

## Introduction

The explanatory model of the motoric movement action is capable of delineating all functional perception processes within any conceivable action. Nevertheless, challenges are encountered in its implementation within the scientific community due to the intrinsic nature of a new paradigm within a complex dynamic system. The explanatory model demands the simultaneous integration of multiple innovative mind steps.

In order to facilitate those necessary subsequent steps in science, a series of new articles is introduced, each time focusing on a different motoric action which will be assessed within the complete spectrum of (general) motor activity. The aim is to provide a broader perspective on specific motor activity required for goal-directed actions. Additionally, they universally demonstrate that motor activity always leads to the simultaneous autonomous perception of both internal and external movements, which can be appointed as primary or secondary, and finally, they elucidate all elements underlying the explanatory model of the motoric movement action.

This article centers around the common task of placing a glass on a coaster. The explanation consists of three parts. The first part exclusively focuses on general motor activity and not on specific actions. Here, an action is defined as deliberate motor activity aimed at performing a specific task as a result of an egocentrically formulated intention. At the end of this part, the glass placing task is fully explained in relation to general motor activity. In contrast to the first part, the second part addresses deliberate c.q. specific actions where an egocentrically intention is formulated to actually place a glass on a coaster. Two action strategies are highlighted in this part, logically stemming from the general motor activity mentioned in the first part. The concluding part emphasizes the relationship between the discussed motor activities and the explanatory model of the motoric movement action.

### Part 1 - Internal motor (movement) activity when no deliberate goal-directed action is involved

The explanatory model of the motoric movement action identifies all functional perception processes within any conceivable action. In which the fundamental assumption encompasses that the action arises from explicitly formulating a particular egocentric will. However, in this paragraph, we do not assess a specific motor action with an egocentric intention yet. In here we solely focus on general motor activity. The distinction between mere motor activity and conscious actions provides valuable insight into the broad spectrum of motor (movement) activity.

#### a. Basic exercise (passive arm without a spoon)

The entire explanation is built upon a basic exercise, involving a forward-leaning posture with one arm hanging passively downward. This posture is often used in physiotherapy exercises to allow isolated

movement of the arm. That is strenuously not the intention of this exercise. It is essential to keep the arm entirely passive during the execution of the basic exercise.



Images: The basic exercise illustrates a forward-leaning position with a passive arm. Despite the apparent action in the images, the primary goal is to develop and observe other body actions and notice how they laterally influence the movement of the passive arm.

Although the hanging arm is prominently present, you are now asked not to focus on it specifically. Conversely, the emphasis must be put on developing other than arm activities (knee, torso, head, foot action, etc.) and observing whether the passive arm is going to move.

#### Conclusion of the basic exercise (passive arm without a spoon)

It can be conclusively observed that you are capable to (secondarily) perceive movement of all separate positions  $P$  of the outside of a passive arm by directing (primary) attention to an entirely different internal motor activity. This observation carries the following factual conclusions:

- 1) While there is nothing predictable about where the passive arm will move, as random internal motor activity will always result in random or chance movements of the passive arm, there is, on the other hand, a very essential fact to note. All individual points/positions  $P$  of the arm will always have to be connected c.q. will always have to emerge from each other. If we, for example, were to focus on three points of the arm, such as the fingertips, knuckles of the fist, and the elbow<sup>25</sup>, you cannot escape the factual conclusion that all those points always move in a line segment shape and that it always involves only one (!) line segment shape<sup>26</sup>. So, this applies to all places on the arm, and within there it can also factually be established that each position  $P$  of the arm will move like a marble in a marble run<sup>27</sup>. The current position  $P(0)$  of each piece of the arm will always mark the separation between the manifest positions  $P(-x)$  and the future positions  $P(+x)$ .
- 2) The second very essential conclusion encompasses the fact that the two movements have a causal connection, but the perception of the movement of internal motor activity (knee, torso, head, foot action, etc.) has absolutely nothing to do with the perception of the movement within the linear form where all separate parts of the arm become part of<sup>28</sup>.

#### b. Basic exercise (passive arm with a spoon)

<sup>25</sup> Hence, you must also realize that when grasping a coffee cup, where we typically focus on the movement of the fingertips, all other mentioned body parts also move in linear forms. This demonstrates that the related perception processes are entirely subjective and depend on the chosen focus.

<sup>26</sup> Indeed, you can factually ascertain that your own body, from birth to the end of life, is also confined within one extensive line segment shape. Your body at every position  $P(0)$  is, in fact, bound to the penultimate position  $P(-1)$  and the subsequent position  $P(+1)$ . There is simply no escaping it. You are factually “*Caught In A Line*”.

<sup>27</sup> [https://www.researchgate.net/publication/336880958\\_The\\_explanatory\\_model\\_of\\_all\\_motoric\\_movement\\_actions\\_-\\_The\\_Marble\\_Run](https://www.researchgate.net/publication/336880958_The_explanatory_model_of_all_motoric_movement_actions_-_The_Marble_Run)

<sup>28</sup> The explanatory model of the motoric movement action demonstrates in numerous articles that the two perceptions of two types of movements are autonomous because they belong to the incompatible worlds of inside and outside the body. Therefore, there can never be a blending of the two.

A crucial aspect of the preceding conclusion involves the fact that internal sensorimotoric movements implicitly lead to a movement of, for example, the fingertips over an external line segment shape outside the body. There is, therefore, a direct causal relationship between these two movements, with the remarkable phenomenon that, without internal motor activity, an action trajectory shape of the fingertips is just not capable to occur. However, it is essential to establish that the perception of the movement of the fingertips over an action trajectory shape outside the body, in spite of this crucial causal relationship, has no connection with the perception of internal sensorimotoric movements. To further clarify this intriguing duality, the basic exercise is repeated, with the sole difference that the hand of the passive arm is holding a spoon. The entire exercise proceeds identically to the description above.

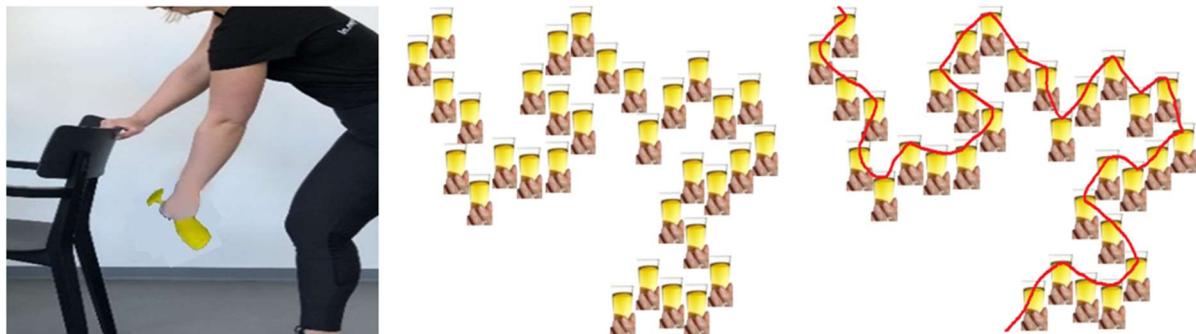


Images: In the repetition of the basic exercise, only a spoon is added, while the exercise remains unchanged. It is crucial, once again, not to develop conscious arm action but merely to observe how other bodily actions influence the entirely passive arm with the spoon. Now you can factually establish that all separate positions  $P$  of the arm but also all separate positions of the spoon will start to move in line segment shapes. Due to the fact that all those separate positions can only emerge from each other c.q. they will always be interconnected.

#### Conclusion of the basic exercise (passive arm with a spoon)

Like in the first version of the basic exercise it can be factually established that you are capable to (secondarily) perceive movement of all separate positions  $P$  of the outside of a passive arm, now holding a spoon, by directing (primary) attention to an entirely different internal motor activity. This observation carries the following factual conclusions:

- 1) While there is nothing predictable about where the passive arm with the spoon will move, as random internal motor activity will always result in random or chance movements of the passive arm with the spoon, there is, on the other hand, a very essential fact to note. All separate points/positions  $P$  of the arm and all separate points/positions  $P$  of the spoon will always have to be connected c.q. will always have to emerge from each other. Once again, the three previously mentioned arm positions (the fingertips, the knuckles of the fist, and the elbow) will create a line segment shape, but also all the separate positions of the spoon also form separate lines. If you focus, for example, on the handle or the bowl of the spoon, you cannot escape the factual conclusion that all those points always move in a linear form, and that, too, always involves exact one (!) entire line segment shape<sup>29</sup>. So, all separate positions of the arm and of the spoon are going to traverse a linear form and within there it can also factually be established that each position  $P$  of the arm and of the spoon will move like a marble in a marble run. The current position  $P(0)$  of each piece of the arm and spoon will always mark the separation between the manifest positions  $P(-x)$  and the future positions  $P(+x)$ .
- 2) The second highly essential conclusion, as mentioned in the first version of the basic exercise, remains fully intact here as well. The perception of the movement of internal motor activity (knee, torso, head, foot action, etc.) has absolutely nothing to do with the observation of the line segment shape that all parts of the arm and now the spoon become a part of. However, the new aspect


<sup>29</sup> Hence, you must also realize that when eating soup, where we typically focus on the movement of the spoon-bowl, all other mentioned body and spoon parts also move in line segment shapes. This demonstrates that the related perception processes are entirely subjective and depend on the chosen focus.

introduced by the spoon concerns the fact that a spoon is an inanimate object. What leads to the astonishing factual conclusion that, for instance, we can observe the movement of the spoon's bowl over a line, but we can only generate motor activity up to the outer surface of the handle of the spoon.

The perplexing aspect of this realization may be the fact that the movement of the spoon's bowl over a line segment shape is entirely dependent on a completely different internal motoric movement. Without this source of action, the spoon's bowl will never move. Additionally, the confirming aspect of this realization may concern the conviction that the perception of the movement of the spoon's bowl over a line has absolutely no connection with the perception of internal motor movement activity.

c. The basic exercise in relation to motoric arm activity moving a glass

If we define an action as a conscious motor activity in which a specific goal is pursued from an egocentrically formulated will, then the explanation in the entire first part of this article falls outside the framework of actions. In this paragraph, we still do not assume a conscious goal-directed action, but rather build upon what the basic exercise regarding the movement of a spoon demonstrates.



Images: The basic exercise can be translated into moving a glass. You should primarily focus on manipulating the sides of the glass c.q. you should mainly direct your attention to proprioceptive perception towards the exterior of the glass that you are touching with your fingers. Only incidentally (secondarily), should you notice if and how the bottom of the glass moves through the air. Even if you engage only in upper arm, forearm, hand, or even just finger action, the consequences remain the same<sup>30</sup>.

As the previous paragraph illustrates, the basic exercise can easily be translated into an action involving an external (lifeless) object, such as a glass. To maximize the distinction between the (perception of) the movement of the spoon bowl/glass and the (perception of) the movement of internal motor activity, and thus make the principles easily accessible, you were specifically asked not to perform any arm activity. However, the distance between the spoon bowl/glass and internal motor activity doesn't matter at all. Even if you focus primarily on (internal) motor arm activity, you can secondarily observe that the spoon bowl or the bottom of the glass moves randomly through the air. You can develop only upper or lower arm activity, but even if you develop only hand or even solely finger action, the same principles will still apply. It should be reiterated that you can only empirically determine that the position  $P(0)$  of the glass, in the present action, must always result from the preceding positions, and that all positions  $P$  of the glass are always confined to one line segment shape.

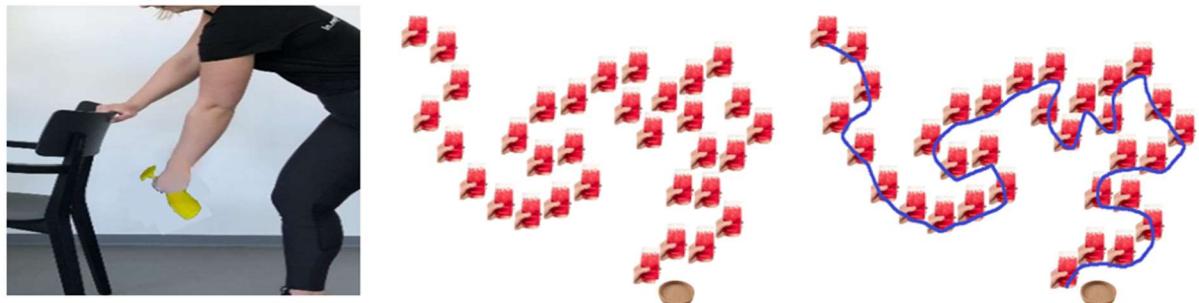
Conclusion basic exercise in relation to motoric arm activity moving a glass

<sup>30</sup> Two essential omissions should be noted in the animations: 1. Only a limited number of glass positions are represented. If you engage in a few minutes of random motor activity, the entire environment should be filled with glass positions. 2. The connection of successive positions  $P$  of the glass cannot be captured in an animation. The perception of the glass movement involves a continuous (smooth) line of glasses. The red line represents this continuous connection but does not actually show glasses. Therefore, you need to create a hybrid perceptual representation, which you can only really perceive by actually moving a glass in the air.

In actions involving lifeless objects, such as a glass, it becomes immediately clear that you (secondarily) can make the glass move by focusing entirely on a different (primary) motor activity, which can only reach up to the outer sides of the glass. This is the only thing necessary to draw the following factual conclusions:

- 1) Although there is nothing predictable about where the glass will move, as random internal motor activity will always result in random or chance movements of the glass, there is, on the other hand, a very essential fact to note. All separate points/positions  $P$  of the glass will always have to be connected c.q. will always have to emerge from each other. Due to which one can conclude that all those points always construct a linear form, and that, too, always involves exact one (!) entire line segment shape. The glass will move in that linear form in the same universal manner as a marble moves within a marble run. In which the current position  $P(0)$  of the glass will always serve as the precise separation between all manifest positions  $P(-x)$  and all future positions  $P(+x)$ .
- 2) Once again, the second highly essential conclusion follows the explanation as in the case of the other basic exercises. The perception of the movement of internal motor activity has absolutely nothing to do with the perception of the movement of the glass within the line segment shape that all positions of the glass become a part of.

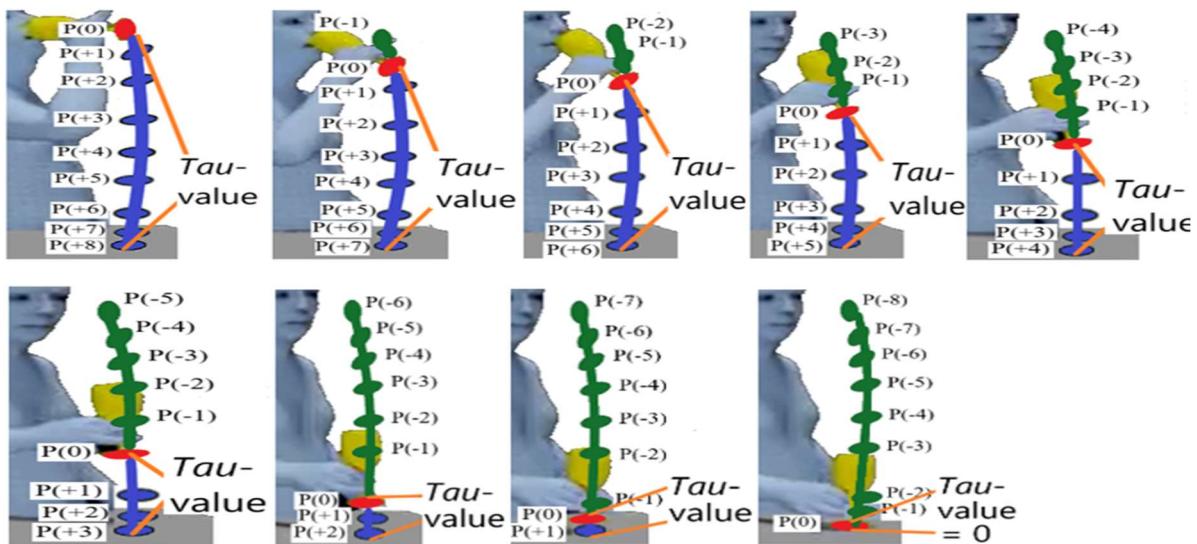
The perplexing aspect of this realization may be the fact that the movement of the glass over a line segment shape is entirely dependent on a completely different internal motoric movement solely reaching the sides of the glass. Without this source of action, the glass will never move. Additionally, the confirming aspect of this realization may concern the conviction that the perception of the movement of the glass over a linear form has absolutely no connection with the perception of internal motor movement activity.


#### Part 2 - Internal motor (movement) activity when a deliberate goal-directed action is involved

The explanatory model of the motoric movement action encompasses the clarification of all functional perception processes within any conceivable action, assuming that these are conscious actions driven by an egocentrically formulated will, with a clearly defined specific goal. So, the motor movements in the first part specifically did not involve actions aimed at placing motor activity in a larger context. Conversely within the second part, general motor activity will now be translated towards specific motoric actions. Although the explanatory model of the motoric movement action is emphasized more in this part, the explanation within this section still aims to clarify the entire spectrum of motor (movement) activity.

So, within the second part we do assume deliberate goal-directed actions where an egocentric will is formulated to achieve a specific goal and in this chapter the placing of a glass on a coaster encompasses the main issue. The basic exercise clearly shows that two possible action strategies c.q. execution perspectives can be pursued in this regard.

##### a. Execution perspective 1 – Primary focus on the internal movements towards the outer sides of the glass and secondary focus on the external movement of the bottom of the glass


The basic exercise from the first part clearly demonstrates that with primary attention on internal motor activity, focused on the sides of the glass, we can randomly move a glass through the air. However, this random movement becomes problematic when formulating the egocentric intention to precisely place the glass on a coaster. Even with primary attention on internal motor activity, we can make the (bottom of the) glass cover a considerable amount of positions in the air in a few minutes, but it is far from economical (efficient and effective). And this is even aside from the question of whether you could precisely bring the (bottom of the) glass, which moves relatively quickly due to the numerous motor activities, to a stop exactly at the coaster.



Images: Even when consciously attempting to place a glass on a coaster, it remains a strategy at all times to, with primary attention on the outsides of the glass, secondarily observe whether the bottom of the glass ever reaches the coaster. While it may require a considerable amount of luck and/or patience, it is a possible action strategy. In any case, it is not an economical (efficient and effective) strategy for this task.

b. Execution perspective 2 – Primary focus on the external movement of the bottom of the glass and secondary focus on the internal movements towards the sides of the glass

Contrary to the description of random motor activity within the basic exercises within the first part of this article and also in contrast to the previous action strategy, when it comes to the emergence of a deliberate action, one can adopt a completely different execution perspective. It would indeed be by far the most parsimonious (ecological) solution to first conceptualize an action trajectory shape and then proceed to execute it.



Images: Within a glass placing task the most economical approach is to first create a perceptual image of an efficient and effective latent action trajectory shape over which the bottom of the glass will successfully reach a coaster and then proceed to fill it in factually.

In the second execution strategy, the roles of attention are reversed. The primary focus now has the goal to track the progress of the bottom of the glass within the action trajectory shape, and this must be followed secondarily by motor activity. In which you now have to observe, similar to the basic exercise in the first part, that motor activity passively follows the primary focus.

It would, of course, be by far the most parsimonious execution strategy, but the reversal of roles requires significantly more cognitive capacity. While the first execution perspective allows for a straightforward initiation of the action, the second one demands the following essential cognitive skills:

- a. It demands that first a perceptual image of a latent action trajectory shape is constructed over which the bottom of the glass can be successfully moved towards a coaster.
- b. There needs a significant complex system to be present which must be capable of mediating the (perception of) the movement of the bottom of the glass within the action trajectory shape. While the roles of attention can be reversed, will not change the fact that the bottom of the glass can only be moved by (the perception of) a completely different autonomous (internal) phenomenon. Even if we try to enforce that the bottom of the glass actually fills in the perceptual image of the latent action trajectory shape, the autonomy of the motor activity will cause the bottom of the glass to deviate from that perceptual image of the latent action trajectory shape at every position P.

### Part 3 – General conclusion

The explanatory model of the motoric movement action is capable of appointing all functional perception processes within any conceivable action. However, its implementation in the scientific world encounters several challenges. It represents an entirely new paradigm and involves an explanation within a complex dynamic system where multiple new conceptual mind steps must be combined simultaneously. Therefor the goal is to try to enhance the insights around the explanatory model, and for that purpose, the preceding paragraphs zoomed in on the entire spectrum of motor activity. From a generally recognizable image, a translation was made to the core concepts and mental processes demanded by the explanatory model of the motoric movement action.

In the end, within this article, two possible action perspectives were identified based on general motor activity. Without any reasonable doubt it becomes clear that the second perspective, where the primary focus is pointed at the construction and execution of a perceptual image of a latent (external) action trajectory shape, will be far more superior to the first mentioned action strategy. However, this ultimate parsimonious solution also reveals which additional conditions the most superior action strategy should meet:

- a. Firstly, an organism must have the cognitive ability to create a perceptual image of a latent action trajectory shape, over which, in the present action, the bottom of the glass will be successfully moved towards the coaster. Regarding this first condition, the explanatory model of the motoric movement action has provided universal scientific evidence that we create such a perceptual image within every conceivable action and also within this placing task<sup>31</sup>.
- b. Secondly, an organism must have the cognitive ability to mediate the movement of the bottom of the glass within that perceptual image of a latent action trajectory. The mere quintessence of this article encompasses namely that motor activity is a completely autonomous phenomenon and although it has a direct causal relationship with the movement of the bottom of the glass within an action trajectory shape, the bottom of the glass will never be able to move by itself. So, we might be intensely motivated to reverse the roles of the primary and secondary focus and envision very neat and straight (optimally economical) action trajectory shapes but due to the autonomy of the perception of both movements, we simply cannot execute them in that way. The autonomous (mainly visual) perception of the movement of the bottom of the glass will eagerly try to follow the perceptual image of the latent action trajectory shape, but the autonomous proprioceptive perception towards the sides of the glass will actually cause the bottom of the glass to deviate at every position P within the perceptual image of a latent action trajectory shape.

The explanatory model of the motoric movement action thus concludes that there must be a very heavy significant system to mediate the ever-deviating movements of the bottom of the glass within an ever-deviating action trajectory shape each consecutive time frame. Regarding this second condition the explanatory model finds that this very heavy system is present within the processing processes of the perception c.q. is present within the functioning of the cortical streams and, based upon current scientific literature, it asserts that there is a double and mutual relationship between the dorsal and ventral stream. In the present placing task, the dorsal stream is mainly related to the processing of perceptions concerning the specific position of the bottom of the glass,

---

<sup>31</sup> <https://www.researchgate.net/publication/382877620> When putting a glass down we first create a perceptual image of a latent action trajectory shape out of the perspective of the bottom of the glass - The scientific evidence

and the ventral stream is mainly related to the processing of perceptions concerning the perceptual image of the whole action trajectory shape. However, this must be seen as mutual. At any time frame  $t$  or at any point  $P(0)$  of the action, one perceives the bottom of the glass relative to the action trajectory shape and vice versa. So, the dorsal stream mainly processes the position of the bottom of the glass, but this is always related to the action trajectory shape, and conversely, the ventral stream mainly processes the progression of the action trajectory, but this is always related to the specific position of the bottom of the glass.

# Part 7 - The function of the cortical streams – It appears a straight action path, but we can only guide a glass to a coaster with a zigzag movement



*Caught In A Line*  
The explanatory model of all motoric movement actions

N.J. Mol  
August 2024

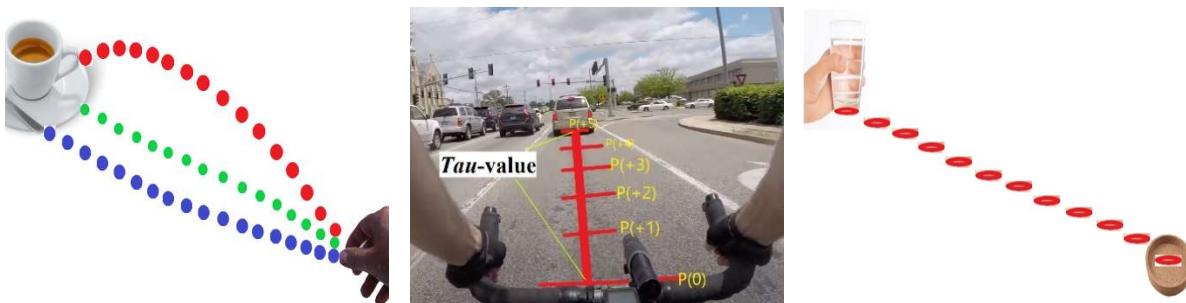
Contact: [kwillinq@gmail.com](mailto:kwillinq@gmail.com)  
<https://www.researchgate.net/profile/Nj-Mol/research>  
<https://www.explanatorymodel.nl/common-daily-actions/placing>

## Introduction

The explanatory model of the motoric movement action provides a profound understanding of all functional c.q. behavioural perception processes occurring within any conceivable motoric action. Nonetheless, challenges arise in its implementation within the scientific community, given the intrinsic nature of a new paradigm within a complex dynamic system. It necessitates the simultaneous integration of several innovative mind steps, including:

1. The scientific evidence that, as part of a tactical (ecological) consideration, we always first create a perceptual image of a latent action trajectory shape prior to the actual placing of a glass on a coaster.
2. The understanding of the necessity of a compelling collaboration between an internal and an external focus in every motor action. When placing a glass on a coaster the movement of the bottom of the glass within the action trajectory shape can only be perceived outside the body and is solely caused by perception of movement within the body<sup>32</sup>. Due to their exclusive domains these perceptions are incompatible.
3. The assumption of the crucial role of the movement of the bottom of the glass over the action trajectory shape as the essence of this task, wherein the external focus must be hierarchically considered primary. This assigns a secondary status to the internal focus and demonstrates that no motor plan is ever conducted.
4. The explanation of how the primary focus generates the *tau*-value and how the secondary focus needs to obediently follow the development of that *tau*-value within a strict *tau*-coupling process, providing the first ecological explanation for anticipating all unexpected events during an action.
5. The insight that it is a subjective choice when we move the bottom of the glass towards a coaster with for example arm action. With the same arm action, the wrist, knuckles, hand back, elbow, etc., also move in a unique action trajectory shape. This demonstrates that there is a causal relationship between the perception of internal and external movements when placing a glass on a coaster, but an explicit relationship only arises when we have (subjectively) "chosen" the bottom of the glass as the leading focus within this placing task.

---


32 When placing a glass on a coaster, it becomes evident that the internal focus extends only to the portion of the glass gripped by the fingers. In most glass placing tasks this compels the sides of the glass. The bottom of the glass is solely constructing the external action trajectory shape and this means that the two foci concern two clearly different locations of the glass.

As a concluding step, this chapter clarifies the functioning of the cortical streams. It provides a comprehensive understanding of why they must play such a prominent role c.q. why an evolutionary need arose for them to occur, and additionally, it precisely explains how within each motor action, they mediate two autonomous processes, namely the zigzag process and the accordion process<sup>33</sup>.

1. The main goal of the tactical movement action (TMA) encompasses the construction of a perceptual image of a latent action trajectory shape between the current position of the bottom of the glass and the coaster

Supported by scientific evidence<sup>34</sup> the explanatory model delineates that the execution of any motor action involves two distinct sequential phases: the tactical movement action (TMA) and the actual movement action (AMA). The tactical movement action is focused solely on planning the upcoming action and must be finalized before any actual execution occurs. A crucial aspect of the tactical movement action is the creation of a perceptual image depicting the latent action trajectory shape between the current glass position and the intended target.

While the explanatory model aligns with existing scientific research, it also introduces a novel conclusion not yet acknowledged by the scientific community. It suggests that the creation of a perceptual image of the latent action trajectory shape between the glass and the coaster involves tactical consideration of whether the space between them can be bridged by a continuous line segment shape encompassing all glass dimensions. This proposition is substantiated by incontrovertible scientific evidence but one can empirically arrive quickly to the same conclusion<sup>35</sup>.



Images: Within cycling and grasping we also construct a perceptual image of a latent action trajectory shape during the tactical movement action (TMA) like in any conceivable motoric action, over which *all dimensions* (!) of the action object (i.e., the bike and the fingertips) will enable the action to succeed. During the actual execution within the actual movement action (AMA), akin to the glass within a placing task on a coaster, one must perceive the movement of the action object during the bridging process, as only the bike, the glass, and the fingertips are going to move c.q. can be moved egocentrically. Within the images, it is particularly noticeable that we actively perceive whether the entire path through all dimensions of the fingertips, the bike, or the glass can be filled in a continuous action trajectory shape c.q. we mainly perceive the "nothingness" in the vista in front of us. Because only in that void there is (empty) space to successfully execute an action.

In addition to unveiling this novelty, it is also revealed that when the tactical movement action has been finalized, we are primarily going to focus on the movement of the (bottom of the) glass towards the coaster. This contrasts with the traditional perspective of science, which remains constantly focused on the coaster itself. During the actual movement action (AMA), our main concern is the

<sup>33</sup> In previous publications, this has been referred to as the harmonica process.

<sup>34</sup> [https://www.researchgate.net/publication/372290282\\_Grapping\\_encompasses\\_two\\_consecutive\\_autonomous\\_phases\\_-\\_The\\_scientific\\_proof\\_that\\_we\\_tactically\\_construct\\_an\\_action\\_trajectory\\_shape\\_prior\\_to\\_the\\_factual\\_execution\\_of\\_that\\_exact\\_same\\_action\\_trajectory](https://www.researchgate.net/publication/372290282_Grapping_encompasses_two_consecutive_autonomous_phases_-_The_scientific_proof_that_we_tactically_construct_an_action_trajectory_shape_prior_to_the_factual_execution_of_that_exact_same_action_trajectory)

<sup>35</sup> The action trajectory shape of the letter towards the mailbox will vary significantly when an obstacle like a large shopping bag is situated in front of the slit. Moreover, in scenarios where the mailbox is obscured by a substantial shopping window, no action trajectory shape can be formed at all.

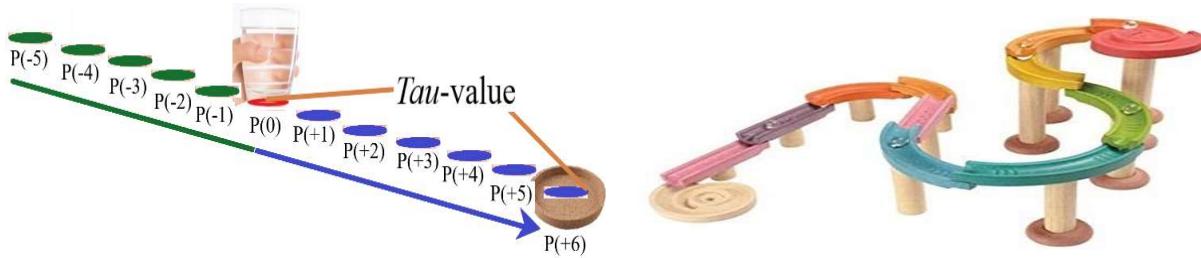
egocentric bridging process of the (bottom of the) glass, guiding it over the perceptual image of the latent action trajectory shape which is exclusively determined during the tactical movement action. So when the factual execution starts the coaster itself is not any longer the focal point, but rather the movement of the (bottom of the) glass towards it c.q. the bridging of the void (!) between the current location of the glass and the coaster forms the essence of the action.

Another revolutionary novelty aligns with the previous thought. Although reaching the end of the action trajectory shape will eventually lead us to the completion of this task, the explanatory model, supported by scientific evidence, demonstrates that we also tactically determine beforehand whether the entire (!) space between the (bottom of the) glass and the coaster can be filled by a continuous line of all dimensions of the glass. This means that all positions P between the current location of the glass and the coaster are observed as actively and as crucially as the endpoint of the action trajectory shape. This realization provides a solid foundation for the fact that during the actual movement action (AMA), we are solely focused on traversing the latent positions P associated with the action trajectory shape. This implies that upon reaching position P(x), for example, somewhere midway along the action trajectory, we are mainly focused on the perception of three positions: position P(x-1), where we just came from, position P(x), where the glass is now, and position P(x+1), the perception of the next position where we need to move the (bottom of the) glass. In this phase, we are primarily engaged in the aforementioned bridging process and only monitor whether the gap between the (bottom of the) glass and the coaster is closing. This also reveals another essential ecological novelty, showing that during the actual movement action, we are indeed not concerned with the coaster itself, but only with reducing the number of latent positions P between the (bottom of the) glass and the coaster.

2. The reciprocal dependency between the internal and external focus results in absolute deviations of the (bottom of the) glass within the perceptual image of the latent action trajectory shape

The explanatory model of the motoric movement action illustrates within the context of placing a glass on a coaster that two foci always arise. We can only guide the (bottom of the) glass along an external action trajectory toward a coaster with a focus on internal movements. These foci are autonomous because the (perception of) movements occur strictly separated inside and outside the body, rendering them incompatible.

However, as the explanatory model now demonstrates that the movement of the (bottom of the) glass within the external action trajectory shape is going to fulfil the essence of the task, an intriguing phenomenon of reciprocal dependency emerges. Only internal motor movements can lead the (bottom of the) glass externally along an action trajectory shape, yet the progression of the (bottom of the) glass within that trajectory will, as the primary focus, dictate those internal motor movements. The inevitable consequence of this observation encompasses that it is not a matter of whether the (bottom of the) glass will deviate within the perceptual image of the latent action trajectory shape, but rather that this is an absolute certainty. In which this absoluteness logically stems from the factual nature of the autonomous perception of both foci.


3. Within the actual movement action (AMA) the cortical streams will have to mediate the continuous flow of absolutely emerging deviations

If we now combine the two preceding paragraphs and proceed to actually place a glass on a coaster, our main endeavour will primarily become to initiate the bridging process of the (bottom of the) glass in which the perceptual image of the latent action trajectory shape serves as an open yet compelling guiding<sup>36</sup> phenomenon. This means that we aim to *step by step* (!) reduce the distance between the

---


<sup>36</sup> Upon perusing the explanatory model, one will start to realize that the construction of a perceptual image of a latent action trajectory shape is necessary to initiate any motor action, but it doesn't need to be followed precisely. That's the essence of a highly economical system. In the initial stages of an action trajectory shape, it's not a problem at all if the letter deviates, as long as the letter comes closer to the endpoint. However, without a (precisely global) perceptual image of a latent action trajectory shape, motor actions cannot commence and the explanatory model introduces the term "*precise global*" in this context. The perceptual image of the latent action trajectory shape must precisely indicate the global (fluctuation boarders of the) direction it should take.

current position of the (bottom of the) glass and the coaster, starting with the first step of moving the (bottom of the) glass from position  $P(0)$  to position  $P(+1)$ .



Images: The explanatory model of the motoric movement action provides a tangible example with the marble in the marble run, illustrating the continuous reciprocal perception-action coupling within any conceivable motoric action. From the perspective of the marble's current position, one can perceive the relationship within the entire marble run, and vice versa, one can perceive the relationship with the marble's current position from the perspective of the entire marble run. Although all this remains invisible when placing a glass on a coaster, it is present in an equivalent manner. Because in our worldly dimensions, it is just a mere fact that all positions  $P$  of any moving object, including the (bottom of the) glass, must emerge from each other, meaning that the perception of the (bottom of the) glass movement is always confined in one single line segment shape within a placing task. In which the current position  $P(0)$  of the (bottom of the) glass will always form the precise separation between the already manifest positions  $P(-x)$  and the still latent positions  $P(+x)$ . In which could be further added that the perceptual image of the still latent action trajectory involves future projections that must arise from the observation of the movement of all subsequent manifest bottom positions prior to the current position  $P(0)$ .

The perceptual image of the entire latent action trajectory shape thus also represents an image of its very beginning, and at the outset of the action, we will try to guide the (bottom of the) glass to follow that beginning. However, even during the bridging to this first position, due to the aforementioned mutual autonomous dependency of the internal and external focus, the (bottom of the) glass will inevitably deviate<sup>37</sup> from the perceptual image. It is an absolute factual given that cannot be avoided, and it would quickly lead to chaotic action trajectories<sup>38</sup> if there were not a system capable of mediating these deviations.



<sup>37</sup> As stated in the previous footnote, this precisely illustrates an optimal parsimonious model, where nothing needs to be executed very precisely, but only provides a general (albeit compelling) direction. If you had to identically place glasses at coasters, placing tasks would become a neigh impossible task. The task, where you only need to reduce the distance, offers countless more possibilities and demonstrates that the bridging process is just one aspect of the task at hand.

<sup>38</sup> The description of the cortical streams within the motoric movement action *car driving* is particularly notable in this regard. If deviations from the driving lane on a highway do not lead to corrections the exponential product will soon lead to accidents. Deviation upon deviation will cause an exponential grow due to the fact that they belong to two complex subsystems.



Images: The perceptual image of a latent action trajectory shape, constructed within the tactical movement action (TMA), depicts a smooth line segment shape from the (bottom of the) glass to the coaster. However, during the actual execution, the (bottom of the) glass, akin to a nerve spiral<sup>39</sup>, will definitely deviate at every position P within that perceptual image due to the autonomy of the internal and external focus. This necessitates redirecting the (bottom of the) glass back to the original perceptual image to prevent a stacking of deviations. In practice, this means that a corresponding adjustment in the remaining part of the latent action trajectory shape must be made from the micro-deviation<sup>40</sup>. Similar to a marble in a marble run, the (bottom of the) glass in relationship to the whole action trajectory shape will become a part of a continuous mutual perception-action coupling, in which the dorsal stream primarily monitors the actual position of the (bottom of the) glass towards the action trajectory shape, and vice versa the ventral stream primarily monitors the action trajectory shape towards the actual position of the (bottom of the) glass. This ingenious mediation of the cortical streams creates the delusion of a straight action trajectory shape. Although the execution of a nerve spiral unequivocally shows the opposite.

Within there the explanatory model of the motoric movement action illustrates that the execution of action trajectory shapes indeed encompasses the essence of motor tasks, and that success hinges on the meticulous management of deviations of the action object within the action trajectory<sup>41</sup>. Therefore, it ideally presupposes a mutually reinforcing system that continuously monitors the relationship with the action trajectory shape from the current position of the (bottom of the) glass, and conversely, constantly monitors the actual position of the (bottom of the) glass from the perceptual image of the action trajectory.

The explanatory model thus implies a rather heavy correction system, and based upon current scientific literature, it concludes that the conceptual steps within the explanatory model precisely presuppose what is described neuroscientifically regarding the processing of perceptions: namely, the functionality of the dorsal and ventral streams. At every time  $t$  or at every position P, all observations are processed by the ventral and dorsal streams in such a way that deviations simply cannot escape attention. The ventral stream primarily processes deviations from the perceptual image of the entire action trajectory to the actual position of the (bottom of the) glass, while the dorsal stream does so vice versa, primarily from the actual position of the (bottom of the) glass to the perceptual image of the entire action trajectory. The mediation of these two processing streams leads to continuous micro-adjustments of the original perceptual image of the latent action trajectory shape, happening so ingeniously and swiftly that the absolute zigzag and accordion-like deviations barely stand out, making the executed action trajectory shapes appear deceptively straight.

<sup>39</sup> <https://www.researchgate.net/publication/376888581> The nerve spiral demonstrates that random motor activity implicitly generates an internal and external focus and provides scientific evidence that the external focus can guide the action due to the in

<sup>40</sup> You can speak of micro-adjustments or of updating c.q. renewing the perceptual image of the remaining latent action trajectory.

<sup>41</sup> One must be able to push an opponent away at the right moment in a precise *tau*-coupling process, not a moment earlier or later, must bring food precisely to the mouth, the fingertips must stop exactly at the coffee cup and not keep knocking it over, and the glass must also be precisely braked before the coaster and not only when it hits the coaster, which would cause valuable drink to be spilled or the glass to be broken.

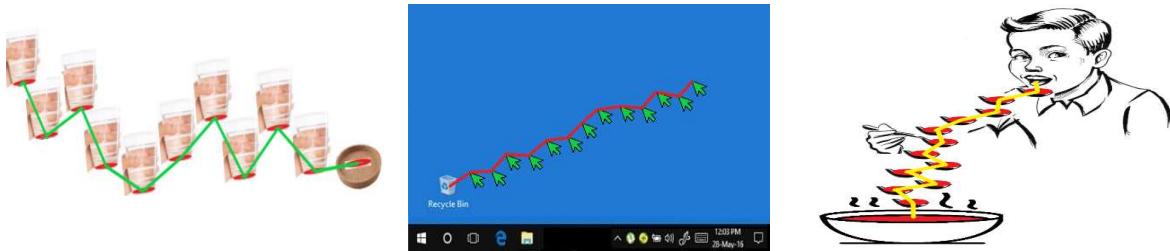
#### 4. The cortical streams mediate two autonomous groups of deviations within every conceivable action

The preceding paragraphs extensively delve into the fact that the action object will inevitably deviate from the perceptual image of the latent action trajectory shape, determined within the tactical movement action, when the action is actually performed. The occurring deviations of an action trajectory involve two autonomous phenomena<sup>42</sup>, which relate to the words *line* and *shape* in the compound term *line segment shape*. The explanatory model demonstrates that they are observed and processed completely separately, yet simultaneously. Driving and cycling (without hand brakes) show, beyond any reasonable doubt, that the deviations in relationship to the line and shape are autonomously observed and processed.



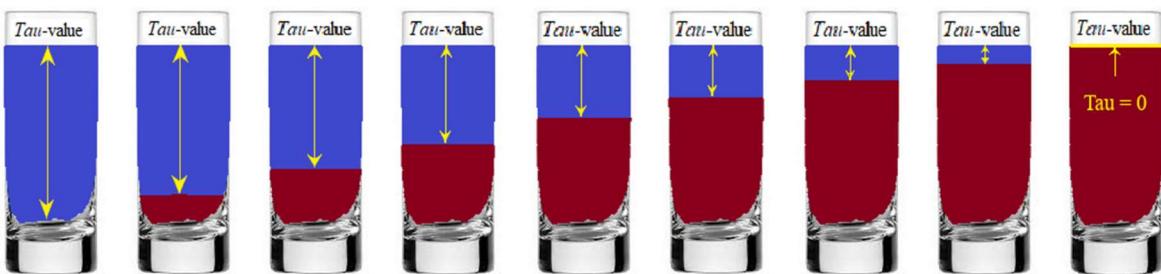
Images: The deviations within each action trajectory shape involve two autonomous phenomena, as indicated by the explanatory model, referred to as the zigzag process and the accordion process. In driving and cycling (without hand brakes), it becomes immediately apparent that steering exclusively influences the *movement within the shape* (!) of the action trajectory. This defines the explanatory model as mediating deviations along the x-axis and causing the zigzag process. Additionally, it becomes equally evident that using the pedals exclusively influences the movement *within the line* (!) of the action trajectory. This defines the explanatory model as mediating deviations along the y-axis and causing the accordion process. Therefore, in driving, it becomes crystal clear that (processing the) perceptions in relationship to the shape have absolutely nothing to do with (processing the) perceptions in relationship to the line. In which it is essential to note that processing observations regarding filling the latent line with the manifest positions P within the external (primary) focus solely involves the perception of the *tau*-value and is thus actually generated solely by the pedals of the car or bicycle. Only the speed within which the line is filled determines the duration of the action, thus finalizing the action.

Deviations along the length axis or y-axis of the action trajectory shape involve deviations of the movement of the action object over time. They are related to determining the *tau*-value within a motor action, and deviations of the action object along the line can be characterized as an accordion process. Deviations along the width axis or x-axis of the shape of the action trajectory involve deviations of the movement of the action object within the shape and can be characterized as a zigzag process.


#### 5. The zigzag process and the accordion process when placing a glass on a coaster

The explanatory model of the motoric movement action demonstrates that both the zigzag process and

---


<sup>42</sup> In essence, they form two complex subsystems within the larger phenomenon of the whole cortical stream operation, revealing that perceiving deviations c.q. the processing of deviations leads to an unprecedented variety of hybrid perception processes. This article does not delve further into this complexity.

the accordion process occur within any conceivable action<sup>43</sup>. However, it's much harder to demonstrate this within placing a glass on a coaster as compared to, for instance, driving a car. Yet, even when placing a glass on a coaster, one must consider separate pedals and a steering wheel that autonomously influence the filling and mediating of the latent action trajectory shape between the (bottom of the) glass and the coaster, which will now be processed through hybrid forms of these phenomena. The zigzag process (the steering process) is easy to capture in an animation, but not the accordion process.



Images: The zigzag process in any conceivable action can easily be represented in an animation. Due to the fact that the primary focus can only be executed by the autonomous secondary focus, the action object (respectively, the (bottom of the) glass, the pointer, and the spoon bowl) will definitely deviate from the perceptual image of the latent action trajectory shape in width.

The accordion process (the pedal process) when placing a glass on a coaster is difficult to represent in an animation because it involves compressions and elongations of time<sup>44</sup>. Yet, just like within car driving, you must realize that you can never move the (bottom of the) glass identically in time along an action trajectory shape. You are quickly capable to empirically establish that the (bottom of the) glass will infinitely vary within certain fluctuation borders.



Images: In the motoric movement action *pouring*, the accordion process is still difficult to capture in an animation. However, it can be factually stated that when filling a glass, as a very rare exception, there are absolutely no deviations within a zigzag process. The cortical streams are fully dedicated to the accordion process during pouring.

<sup>43</sup> While this imposes greater demands on organismal development, conversely, it allows for a compelling demonstration of its seamless integration within an ecological framework. The dichotomy that distinguishes a separate x- and y-axis component actually constitutes the breakthrough that allows us to reduce highly complex perception processes to such seemingly simple phenomena.

<sup>44</sup> Wherein it should be noted for the record that the (bottom of the) glass doesn't move back within the action trajectory shape.